IVILC Capacitors

Introduction to Knowles Capacitors

At Knowles Capacitors we make Single Layer, Multilayer, High Reliability and Precision Variable Capacitors; EMI Filters and Thin Film Devices.

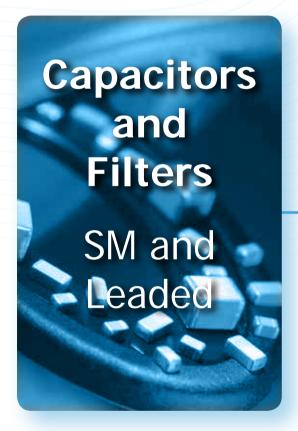
Our business was formed by combining Dielectric Laboratories, Johanson Manufacturing, Novacap, Syfer Technology and Voltronics into a single organization - each well-established specialty capacitor makers with a combined history of over 175 years.

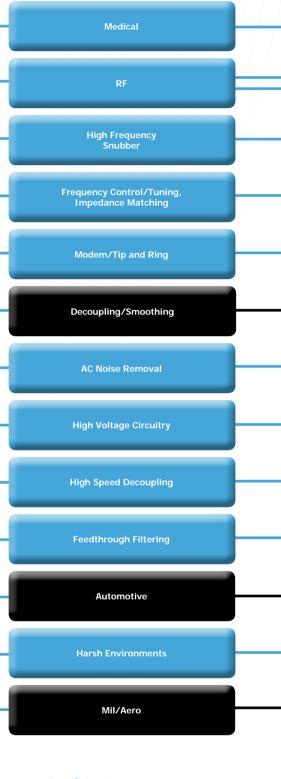
Our expertise is the design and manufacture of components important to engineers in applications where function and reliability are key. The markets we serve include medical implantable and medical equipment, military, aerospace/avionics, EMI and connector filtering, oil exploration, instrumentation, industrial electronics, optical networks, telecom and automotive.

We aim to be a leader in every market we serve, to the benefit of our customers and our mutual longterm success. We achieve this by:

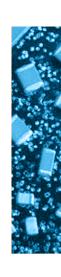
- Understanding our customers' real needs and providing products and services to meet and exceed them.
- Providing better products and services than competitors.
- Investing in product development, manufacturing processes and people.
- Insisting on the highest ethical standards and a business culture of trust, respect and open communication.

Products in this catalogue form the basis of our ranges for 'new designs'. However, there are legacy products from our five brands that will still be available – we ask that you contact your local Sales Office for details and ordering.





Product Selector



is particularly recommended for these applications where possible.

Contents

General & Technical Introduction	Dielectric classifications and characteristics Termination types including FlexiCap™ Manufacturing processes Testing IECQ-CECC and AEC-Q200 Periodic Tests High Reliability Testing Regulations and Compliance Explanation on Ageing of MLC Handling, Storage, Soldering and Mechanical Precautions Chip Marking System Packaging Information - Ceramic chip capacitors Chip Dimensions		6-78911121314-161718-19
MLCC Ordering Information	Chip Ordering Information Chip Ordering Information Chip Ordering Information	Novacap	22
MLC Capacitors	Quick Reference Guide Industry Standard - X7R Industry Standard - COG/NP0 Other Popular Sizes - X7R Other Popular Sizes - COG/NP0 Standard Chip - BX Improved ESR - BX & X7R High Q - Q(MS) & U ranges High Q - High Power RF - Surface Mount & Ribbon Leaded High Q Porcelain - CF Series - COG/NP0 High Q Porcelain - AH Series - P90 VC1 Residual - X7R TCC/VCC range - (BX & BZ) X7R Open Mode and Tandem - X7R IECQ-CECC range - COG/NP0 & X7R Automotive Grade - AEC-Q200 range - MLC, EMI & X2Y High Capacitance - X7R & X5R StackiCap TM - X7R NC range - X7R NC range - X7R NC range - Safety Certified AC Non-Magnetic - High Q, COG/NP0 & X7R Non-Magnetic - High Power RF - High Q - Porcelain P90 & COG/NP0 115Vac 400Hz - COG/NP0 & X7R DWV (High Dielectric Withstand Voltage) range - COG/NP0 & X7R High Temperature - X8R - 150°C High Temperature - X8R - 150°C High Temperature - X8R - 150°C High Temperature - COG/NP0 & Class II - 160°C & 200°C HiT range of 200°C Caps - COG/NP0 & X7R Capacitor Assemblies - ST & SM ranges - COG/NP0 & X7R Capacitor Assemblies - ST & SM ranges - COG/NP0 & X7R	Novacap-Syfer Novacap-Syfer Novacap-Syfer Novacap-Syfer Novacap Novacap Syfer Novacap Novacap Novacap Novacap Novacap Novacap Novacap Novacap	26-2930-3334-3536-37383940-4243-4445-4647-4950-5254-5556-6768-6968-6968-6970-71727575
MLC Radial Leaded	Radial Leaded - Ordering Information	Novacap	84-85
Capacitors	Standard Radial Leaded - COG/NPO, X7R	Novacap	90
SM EMI Filters	Feedthrough Filters - E01 & E07		

Dielectric characteristics

Class I Dielectrics

Multilayer Ceramic Capacitors are generally divided into classes which are defined by the capacitance temperature characteristics over specified temperature ranges. These are designated by alpha numeric codes. Code definitions are summarised below and are also available in the relevant national and international specifications.

Capacitors within this class have a dielectric constant range from 10 to 100. They are used in applications which require ultra stable

dielectric characteristics with negligible dependence of capacitance and dissipation factor with time, voltage and frequency. They exhibit the following characteristics:-

- a) Time does not significantly affect capacitance and dissipation factor (Tan δ) no ageing.
- b) Capacitance and dissipation factor are not affected by voltage.
- c) Linear temperature coefficient.

				Cla	ass I Dielectric	:s		
		COG/NPO (Porcelain)	P90 (Porcelain)		G/NPO	X8G		ss I nperature
		Ultra stable	Ultra stable	Ultra	a stable	Ultra stable	Ultra	stable
Dielectric	IECQ-CECC	-	-	1	B/CG	-	-	-
classifications	EIA	C0G/NP0	P90	CO	G/NP0	X8G	-	-
	MIL	-	-	CC	G (BP)	-	-	-
	DLI	CF	AH	-	-	-	-	-
0.1.	Novacap	-	-	-	N, RN	-	F	D, RD
Ordering code	Syfer	-	-	Q, U	С	Н	-	G
	Voltronics	F	Н	Q	-	-	-	-
Rated temperature range		-55°C to +125°C	-55°C to +125°C	-55°C to +125°C	-55°C to +125°C	-55°C to +150°C	-55°C to +160°C	-55°C to +200°C
Maximum capacitance	No DC voltage applied	0 ±15 ppm/°C	0 ±20 ppm/°C	0 ±30 ppm/°C	0 ±30 ppm/°C	0 ±30 ppm/°C	0 ±30 ppm/°C	0 ±30 ppm/°C
change over temperature range	Rated DC voltage applied				-			
Tangent of loss angle (tan δ)		≤0.0005	@1MHz	≤0.0005 @1MHz	>50pF \leq 0.0015 \leq 50pF 0.0015 $\frac{(15}{Cr}$ + 0.7)	≤0.0005 @1MHz	≤0.	001
Insulation resistance (Ri)	Time constant (Ri x Cr)	_	106 MΩ min 105 MΩ min	(1	100 G Ω or 1000 s whichever is the leas	t)	@160°C & 20 10	$G\Omega$ or 1000Ω F 0° C = $1G\Omega$ or Ω F is the least)
	Cr <4.7pF			±0.05pF	, ±0.10pF, ±0.25pF,	±0.5pF		
Capacitance Tolerance	Cr ≥4.7 to <10pF			±0.	10pF, ±0.25pF, ±0.5	рF		
	Cr ≥10pF			±1	%, ±2%, ±5%, ±10	%		
Diologaria	<u>≤</u> 200V					2.5 times		
Dielectric strength Voltage applied	>200V to <500V		2.5 times		Rat	ed voltage +250\	/	
for 5 seconds. Charging	500V to <u><</u> 1kV	2.5 times				1.5 times		
current limited to 50mA maximum.	>1kV to ≤1.2kV		N/A			1.25 times		
maximum.	>1.2kV		1.2 times					
	Chip	-	-	55/	125/56	-		-
Climatic category (IEC)	Dipped	-	-	-	55/125/21	-		-
,	Discoidal	-	-	-	55/125/56	-		-
Ageing characteristic (Typical)					Zero			
Approvals	Syfer Chip	-	-	-	QC-32100	-		-

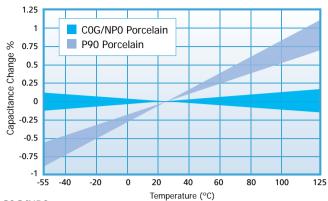
Dielectric characteristics

Class II Dielectrics

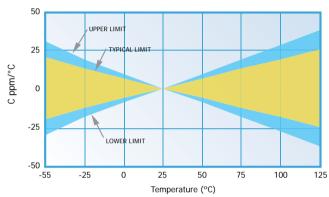
Capacitors of this type have a dielectric constant range of 1000-4000 and also have a non-linear temperature characteristic which exhibits a dielectric constant variation of less than $\pm 15\%$ (2R1) from its room temperature value, over the specified temperature range. Generally used for by-passing (decoupling), coupling, filtering, frequency discrimination, DC blocking and voltage transient suppression with greater volumetric efficiency than Class I units, whilst maintaining stability within defined limits.

Capacitance and dissipation factor are affected by:-

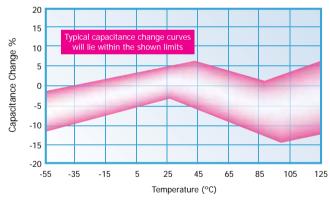
- a) Time (Ageing)
- b) Voltage (AC or DC)
- c) Frequency


X5R Stable	X7R Stable		X8R	Clas			
Stable				High Tem	nperature		
	2D1		Stable	Sta	ible		
- 2C1	2C1 2R1 2X1		-	-	-	IECQ-CECC	Dielectric
X5R -	X7R		X8R			EIA	classifications
- BZ	-	ВХ	-	-	-	MIL	
	-	-	-	-	-	DLI	
BW -	B, RB	X	S	G	E, RE	Novacap	Oudedon and
P R	X	В	N	-	Χ	Syfer	Ordering code
-	Х	-	-	-	-	Voltronics	
-55°C to +85°C	-55°C to +125°C		-55°C to +150°C	-55°C to +160°C	-55°C to +200°C		Rated temperature range
±15% ±15%	±15%	±15%	±15%	+15 -40%	+15 -65%	No DC voltage applied	Maximum capacitance
- +15 -45%	-	+15 -25%	-	-	-	Rated DC voltage applied	change over temperature range
	5V ≤0.025 5V ≤0.035		≤0.025	<u>≤</u> 0.	025		Tangent of loss angle (tan δ)
	(w	100 G Ω or 1000 s thichever is the lea	ast)			Time constant (Ri x Cr)	Insulation resistance (Ri)
	£	=5%, ±10%, ±20º	%				Capacitance Tolerance
		2.5 times				<u>≤</u> 200V	Dielectric
	R	ated voltage +250	OV			>200V to <500V	strength Voltage applied for 5 seconds.
		1.5 times				500V to <1kV	Charging current limited to 50mA
	1.2 times					≥1kV	maximum.
	55/125/56				-	Chip	Climatic
	5/125/21		-		-	Dipped	category (IEC)
- 5	5/125/56		-			Discoidal	
5% Typical		<2% per t	ime decade				Ageing characteristic (Typical)
- QC-32100	-	-	-	QC-32100	-	Syfer Chip	Approvals

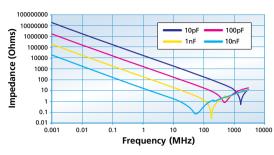
^{*} Refer to page 61 for details of Dissipation Factor.


Dielectric characteristics

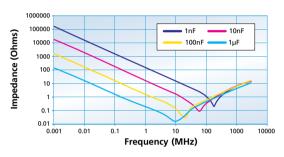
Typical dielectric temperature characteristics


Porcelain COG/NP0 & P90

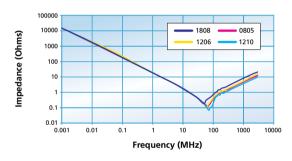
C0G/NP0



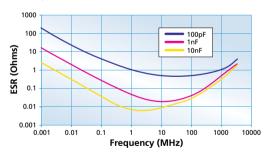
X7R



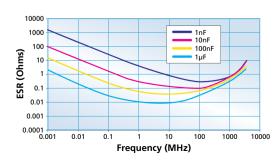
Impedance vs Frequency


Ultra Stable COG/NPO dielectric

Stable X7R dielectric



Stable X7R dielectric - 10nF



ESR vs Frequency - chips

Ultra Stable COG/NPO dielectric

Stable X7R dielectric

Dielectric characteristics - Porcelain COG/NPO & P90

Typical ESR and Series Resonance characteristics

CF Porcelain (C0G/NP0) and AH Porcelain (P90)

Dielectric	DLI Series	Cap (pF)		Typical ESR		Series Resonance (MHz)
	Series	(pr)	150 MHz	500 MHz	1 GHz	(IVIF1Z)
	COCCE	1	0.182	0.276	0.428	10300
	C06CF 0603	10	0.095	0.159	0.243	3200
		47	0.081	0.127	0.173	1400
		1	0.073	0.089	0.146	9900
	C11CF 0505	10	0.049	0.075	0.107	3100
	0303	100	0.040	0.073	0.111	970
		1	0.073	0.082	0.124	9060
	C17CF	10	0.065	0.098	0.136	3100
CE	1111	100	0.041	0.070	0.102	1300
	CF (10)	1000	0.034	0.073	-	400
TCC (ppm/°C) (-55° to +125°C)		1	0.068	0.086	0.158	9060
Porcelain	C18CF	10	0.058	0.087	0.118	3100
(COG/NPO)	1111	1000	0.041	0.068	_	1000
0 ±15		10	0.072	0.113	0.164	2480
	C22CF	100	0.047	0.079	0.119	1000
	2225	1000	0.036	0.067	-	320
		2700	0.035	-	_	214
		2700	10MHz	30MHz	100MHz	214
		10	0.121	0.054	0.037	2100
	100	0.121		0.037	680	
	C40CF 3838			0.038		
	3030	1000	0.032	0.036	0.038	210
		5100	0.011	0.016	0.040	95
Dielectric	DLI Series	Cap		Typical ESR		Series Resonance
	Series	(pF)	150 MHz	500 MHz	1 GHz	(MHz)
	644411	1	0.067	0.08	0.136	9200
	C11AH 0505	10	0.044	0.071	0.104	3000
		100	0.032	0.055	0.086	1000
		1	0.059	0.063	0.114	9064
	C17AH	10	0.039	0.06	0.085	3100
	1111					
	1111	1000	0.024	0.05	0.074	1290
۸H					0.074 0.138	1290 3100
AH	C18AH	1000	0.024	0.05		
TCC (ppm/°C)		1000 10	0.024 0.059	0.05 0.094	0.138	3100
TCC (ppm/°C)	C18AH	1000 10 100	0.024 0.059 0.028	0.05 0.094 0.069	0.138 0.109	3100 1290
TCC (ppm/°C) (-55° to +125°C)	C18AH 1111	1000 10 100 1000	0.024 0.059 0.028 0.023	0.05 0.094 0.069 0.063	0.138 0.109 -	3100 1290 400
TCC (ppm/°C) (-55° to +125°C) Porcelain	C18AH	1000 10 100 1000 10	0.024 0.059 0.028 0.023 0.074	0.05 0.094 0.069 0.063 0.207 0.116	0.138 0.109 - 0.249	3100 1290 400 2480
TCC (ppm/°C) (-55° to +125°C) Porcelain (P90)	C18AH 1111 C22AH	1000 10 100 1000 1000 10 1000	0.024 0.059 0.028 0.023 0.074 0.048 0.028	0.05 0.094 0.069 0.063 0.207	0.138 0.109 - 0.249 0.19	3100 1290 400 2480 1000 320
TCC (ppm/°C) (-55° to +125°C) Porcelain (P90)	C18AH 1111 C22AH	1000 10 100 1000 10 10	0.024 0.059 0.028 0.023 0.074 0.048 0.028 0.027	0.05 0.094 0.069 0.063 0.207 0.116 0.14	0.138 0.109 - 0.249 0.19 - -	3100 1290 400 2480 1000
TCC (ppm/°C) (-55° to +125°C) Porcelain (P90)	C18AH 1111 C22AH	1000 10 100 1000 1000 10 100 1000 2700	0.024 0.059 0.028 0.023 0.074 0.048 0.028 0.027	0.05 0.094 0.069 0.063 0.207 0.116 0.14 -	0.138 0.109 - 0.249 0.19 - - 100MHz	3100 1290 400 2480 1000 320 214
TCC (ppm/°C) (-55° to +125°C) Porcelain (P90)	C18AH 1111 C22AH 2225	1000 10 100 1000 10 100 1000 2700	0.024 0.059 0.028 0.023 0.074 0.048 0.028 0.027 10MHz 0.066	0.05 0.094 0.069 0.063 0.207 0.116 0.14 - 30MHz 0.033	0.138 0.109 - 0.249 0.19 - - 100MHz	3100 1290 400 2480 1000 320 214
TCC (ppm/°C) (-55° to +125°C) Porcelain (P90)	C18AH 1111 C22AH	1000 10 100 1000 1000 10 100 1000 2700	0.024 0.059 0.028 0.023 0.074 0.048 0.028 0.027	0.05 0.094 0.069 0.063 0.207 0.116 0.14 -	0.138 0.109 - 0.249 0.19 - - 100MHz	3100 1290 400 2480 1000 320 214

www.knowlescapacitors.com

Dielectric termination combinations

		Palladium Silver	Palladium Silver	Nickel Barrier (100% matte tin plating). Lead free	Nickel Barrier 90/10% tin/lead	Nickel Barrier Gold flash	FlexiCap™ with Nickel Barrier 100% tin	FlexiCap™ with Nickel Barrier 90/10% tin/lead	FlexiCap™ with Copper Barrier 100% tin	FlexiCap™ Ag Layer, 400-u-in Cu barrier 200-u-in Sn Plate	FlexiCap™ with Copper Barrier 90/10% tin/lead	Copper Barrier 100% tin	Ag Layer, 400-500u-in Cu barrier, 200-u-in 90/10 Sn Plate	Copper Barrier 90/10% tin/lead	Solderable Silver	Solderable Palladium Silver	Ag termination, Ni Barrier, Heavy SnPb Plated Solder	Ag termination, Enhanced Ni Barrier, Sn Plated Solder	Ag termination, Enhanced Cu Barrier, Sn Plated Solder	Ag Termination, Cu Barrier Layer, Heavy SnPb Plated Solder
			RoHS	RoHS		RoHS	RoHS		RoHS			RoHS			RoHS	RoHS		RoHS	RoHS	
Recommended for Solder Attachment				•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
Recommended for Conduc Epoxy Attachment	ctive	•	•			•														
грому лешенителе	DLI	-	Р	Z	U	S	Q	Υ	М	-	-	w	-	v	-	-	Т	E	н	R
	Novacap	Р	PR	N	Υ	NG	С	D	_	_	_	В	_	Е	s	К	_	_	_	_
Termination ordering code:	Syfer		F	J	A		Υ	Н	3	_	5	2	_	4	_		_	_	_	_
	Voltronics																			
Distratuia		-	S	-	-	-	-	-	3	М	-	2	W	-	-				-	-
Dielectric	Code																			
NPO Porcelain - Hi Q	DLI - CF		•			•		•				•								
P90 Porcelain - Hi Q COG - Hi Q/Low ESR	DLI - AH Syfer - Q, U			•	•				•					•						•
COG - Hi Q/Low ESR BME																				
COG - HI Q/LOW ESK BIVIE	Novacap - N/RN	•	•	•	•	•	•	•							•	•				
COG/NPO	Syfer - A				•			•												
000/1410	Syfer - C, F							•												
COG/NPO - BME	Syfer - G, K																			
COG/NPO - BIVIL	Novacap - M		•									•		•		•				
COG/NPO -	Syfer - C, Q								•					•						
Non-Mag	Voltronics - Q		•							•		•	•							
	Syfer - P		•	•	•		•	•												
X5R	Novacap - BW			•	•	•														
	Novacap - B/RB	•	•	•	•	•	•	•							•	•				
X7R	Syfer - E						•	•												
	Syfer - X, D		•	•	•		•	•												
	Novacap - BB			•	•	•														
X7R - BME	Syfer - J			•			•	•												
	Syfer - S						•	•												
DV	Novacap - X	•	•	•	•	•	•	•							•	•				
BX	Syfer - B		•	•	•		•	•												
BZ	Syfer - R		•	•	•		•	•												
	Novacap - C	•	•									•		•		•				
X7R - Non-Mag	Syfer - X								•		•									
	Voltronics - X		•						•	•			•							
Novacap - S X8R Syfer - N	•	•	•	•		•	•							•	•					
			•	•	•		•	•												
	Syfer - T						•	•												
COG/NPO (160°C)	Novacap - F	•	•	•	•		•	•							•	•				
COG/NPO (200°C)	Novacap - D														•	•				
COG/NPO (200°C)	Novacap - RD			•																
	Syfer - G			•																
Class II (160°C)	Novacap - G	•	•	•	•		•	•							•	•				
	Novacap - E														•	•				
Class II (200°C)	Novacap - RE			•																
	Syfer - X			•																

Dielectric codes in Red - AEC-Q200 qualified. Dielectric codes in Green - IECQ-CECC.

FlexiCap[™] overview

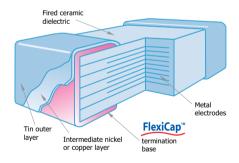
FlexiCap™ termination

MLCCs are widely used in electronic circuit design for a multitude of applications. Their small package size, technical performance and suitability for automated assembly makes them the component of choice for the specifier.

However, despite the technical benefits, ceramic components are brittle and need careful handling on the production floor. In some circumstances they may be prone to mechanical stress damage if not used in an appropriate manner. Board flexing, depanelisation, mounting through hole components, poor storage and automatic testing may all result in cracking.

Careful process control is important at all stages of circuit board assembly and transportation - from component placement to test and packaging. Any significant board flexing may result in stress fractures in ceramic devices that may not always be evident during the board assembly process. Sometimes it may be the end customer who finds out - when equipment fails!

Knowles has the solution - FlexiCap™


FlexiCap[™] has been developed as a result of listening to customers' experiences of stress damage to MLCCs from many manufacturers, often caused by variations in production processes.

Our answer is a proprietary flexible epoxy polymer termination material, that is applied to the device under the usual nickel barrier finish. FlexiCap $^{\text{TM}}$ will accommodate a greater degree of board bending than conventional capacitors.

Knowles FlexiCap™ termination

Ranges are available with FlexiCapTM termination material offering increased reliability and superior mechanical performance (board flex and temperature cycling) when compared with standard termination materials. Refer to Knowles application note reference AN0001. FlexiCapTM capacitors enable the board to be bent almost twice as much before mechanical cracking occurs. Refer to application note AN0002.

FlexiCap[™] is also suitable for Space applications having passed thermal vacuum outgassing tests. Refer to Syfer application note reference AN0026.

FlexiCap™ MLCC cross section

FlexiCap™ benefits

With traditional termination materials and assembly, the chain of materials from bare PCB to soldered termination, provides no flexibility. In circumstances where excessive stress is applied - the weakest link fails. This means the ceramic itself, which may fail short circuit.

The benefit to the user is to facilitate a wider process window - giving a greater safety margin and substantially reducing the typical root causes of mechanical stress cracking.


FlexiCap™ may be soldered using your traditional wave or reflow solder techniques including lead free and needs no adjustment to equipment or current processes.

Knowles has delivered millions of FlexiCap™ components and during that time has collected substantial test and reliability data,

working in partnership with customers world wide, to eliminate mechanical cracking.

An additional benefit of FlexiCap $^{\text{TM}}$ is that MLCCs can withstand temperature cycling -55°C to 125°C in excess of 1,000 times without cracking.

FlexiCap[™] termination has no adverse effect on any electrical parameters, nor affects the operation of the MLCC in any way.

 Picture taken at 1,000x magnification using a SEM to demonstrate the fibrous nature of the FlexiCap™ termination that absorbs increased levels of mechanical stress.

Available on the following ranges:

- All High Reliability ranges
- Standard and High Voltage Capacitors
- Open Mode and Tandem Capacitors
- Safety Certified Capacitors
- Non-magnetic Capacitors
- 3 terminal EMI chips
- X2Y Integrated Passive Components
- X8R High Temperature capacitors

Summary of PCB bend test results

The bend tests conducted on X7R have proven that the FlexiCap $^{\text{TM}}$ termination withstands a greater level of mechanical stress before mechanical cracking occurs.

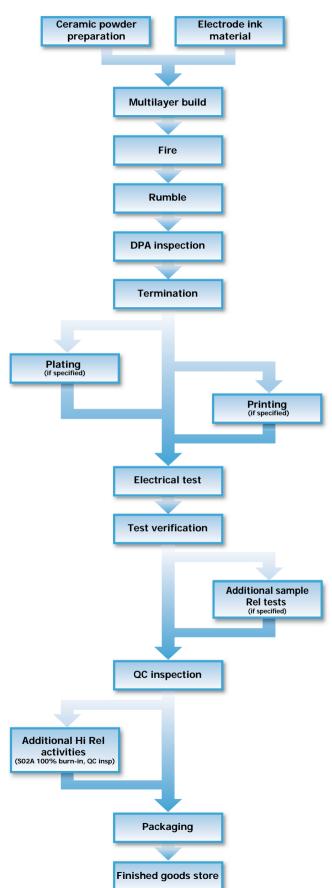
The AEC-Q200 test for X7R requires a bend level of 2mm minimum and a cap change of less than 10%.

Product X7R	Typical bend performance under AEC-Q200 test conditions
Standard termination	2mm to 3mm
FlexiCap™	Typically 8mm to 10mm

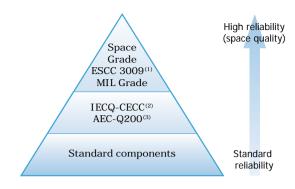
Application notes

FlexiCapTM may be handled, stored and transported in the same manner as standard terminated capacitors. The requirements for mounting and soldering FlexiCapTM are the same as for standard SMD capacitors.

For customers currently using standard terminated capacitors there should be no requirement to change the assembly process when converting to $FlexiCap^{TM}$.

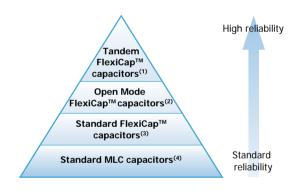

Based upon board bend tests in accordance with IEC 60384-1 the amount of board bending required to mechanically crack a ${\sf FlexiCap^{TM}}$ terminated capacitor is significantly increased compared with standard terminated capacitors.

It must be stressed however, that capacitor users must not assume that the use of FlexiCap™ terminated capacitors will totally eliminate mechanical cracking. Good process controls are still required for this objective to be achieved.



Manufacturing processes

Production process flowchart


Knowles reliability grades

Notes:

- Space grade tested in accordance with ESCC3009 (refer to Knowles Spec S02A 0100) or MIL Grade (in accordance with MIL-PRF-123, MIL-PRF-55681).
- IECQ-CECC. The International Electrotechnical Commission (IEC) Quality
 Assessment System for Electronic Components. This is an internationally
 recognised product quality certification which provides customers with
 assurance that the product supplied meets high quality standards.
 - View Knowles IECQ-CECC approvals at http://www.iecq.org or at www.knowlescapacitors.com
- AEC-Q200. Automotive Electronics Council Stress Test Qualification For Passive Components. Refer to Knowles application note reference AN0009.

Knowles reliability surface mount product groups

Notes:

- "Tandem" construction capacitors, ie internally having the equivalent
 of 2 series capacitors. If one of these should fail short-circuit, there is still
 capacitance end to end and the chip will still function as a capacitor,
 although capacitance maybe affected. Refer to application note AN0021.
 Also available qualified to AEC-Q200.
- "Open Mode" capacitors with FlexiCap™ termination also reduce the possibility of a short circuit by utilising inset electrode margins. Refer to application note AN0022. Also available qualified to AEC-Q200.
- Multilayer capacitors with Knowles FlexiCap™ termination. By using FlexiCap™ termination, there is a reduced possibility of the mechanical cracking occurring.
- "Standard" capacitors includes MLCCs with tin finish over nickel but no FlexiCap™.

Testing

Tests conducted during batch manufacture	Knowles reliability SM product group					
	Standard SM capacitors	IECQ-CECC / MIL grade	AEC-Q200	S (Space grade) High Rel S02A ESCC 3009 MIL-PRF-123		
Solderability	•	•	•	•		
Resistance to soldering heat	•	•	•	•		
Plating thickness verification (if plated)	•	•	•	•		
DPA (Destructive Physical Analysis)	•	•	•	•		
Voltage proof test (DWV / Flash)	•	•	•	•		
Insulation resistance	•	•	•	•		
Capacitance test	•	•	•	•		
Dissipation factor test	•	•	•	•		
100% visual inspection	0	0	•	•		
100% burn-in. (2xRV @125°C for 168 hours)	0	0	0	•		
Load sample test @ 125°C	0	0	•	LAT1 & LAT2 (1000 hours)		
Humidity sample test. 85°C/85%RH	0	0	•	240 hours		
Hot IR sample test	0	0	0	0		
Axial pull sample test (MIL-STD-123)	0	0	0	0		
Breakdown voltage sample test	0	0	0	О		
Deflection (bend) sample test	0	0	0	О		
SAM (Scanning Acoustic Microscopy)	0	0	0	О		
LAT1 (4 x adhesion, 8 x rapid temp change + LAT2 and LAT3)	-	-	-	О		
LAT2 (20 x 1000 hour life test + LAT3)	-	-	-	0		
LAT3 (6 x TC and 4 x solderability)	-	-	-	0		

Test conducted as standard.Optional test. Please discuss with the Sales Office.

Periodic tests

IECQ-CECC and **AEC-Q200**

Periodic tests conducted for IECQ-CECC and AEC-Q200

Test ref	Test	Termination type	Additional requirements		Sample cceptan		Reference
P1	High temperature exposure (storage)	All types	Un-powered. 1,000 hours @ T=150°C. Measurement at 24 ± 2 hours after test conclusion	12	77	0	MIL-STD-202 Method 108
P2	Temperature cycling	COG/NPO: All types X7R: Y and H only	1,000 cycles -55°C to +125°C Measurement at 24 \pm 2 hours after test conclusion	12	77	0	JESD22 Method JA-104
Р3	Moisture resistance	All types	T = 24 hours/cycle. Note: Steps 7a and 7b not required. Unpowered. Measurement at 24 ± 2 hours after test conclusion	12	77	0	MIL-STD-202 Method 106
P4	Biased humidity	All types	1,000 hours 85°C/85%RH. Rated voltage or 50V whichever is the least and 1.5V. Measurement at 24 \pm 2 hours after test conclusion	12	77	0	MIL-STD-202 Method 103
P5	Operational life	All types	Condition D steady state TA=125°C at full rated. Measurement at 24 \pm 2 hours after test conclusion	12	77	0	MIL-STD-202 Method 108
P6	Resistance to solvents	All types	Note: Add aqueous wash chemical. Do not use banned solvents	12	5	0	MIL-STD-202 Method 215
P7	Mechanical shock	COG/NPO: All types X7R: Y and H only	Figure 1 of Method 213. Condition F	12	30	0	MIL-STD-202 Method 213
P8	Vibration	COG/NPO: All types X7R: Y and H only	5g's for 20 minutes, 12 cycles each of 3 orientations. Note: Use 8" x 5" PCB 0.031" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point. Test from 10-2,000Hz	12	30	0	MIL-STD-202 Method 204
P9	Resistance to soldering heat	All types	Condition B, no pre-heat of samples: Single wave solder - Procedure 2	3	12	0	MIL-STD-202 Method 210
P10	Thermal shock	COG/NPO: All types X7R: Y and H only	-55°C/+125°C. Number of cycles 300. Maximum transfer time - 20 seconds, dwell time - 15 minutes. Air-Air	12	30	0	MIL-STD-202 Method 107
P11	Adhesion, rapid temp change and climatic sequence	X7R: A, F and J only	5N force applied for 10s, -55°C/ +125°C for 5 cycles, damp heat cycles	12	27	0	BS EN132100 Clause 4.8, 4.12 and 4.13
P12	Board flex	COG/NPO: All types X7R: Y and H only	3mm deflection Class I 2mm deflection Class II	12	30	0	AEC-Q200-005
P13	Board flex	X7R: A, F and J only	1mm deflection.	12	12	0	BS EN132100 Clause 4.9
P14	Terminal strength	All types	Force of 1.8kg for 60 seconds	12	30	0	AEC-Q200-006
P15	Beam load test	All types	-	12	30	0	AEC-Q200-003
P16	Damp heat steady state	All types	56 days, 40°C / 93% RH 15x no volts, 15x 5Vdc, 15x rated voltage or 50V whichever is the least.	12	45	0	BS EN132100 Clause 4.14

Test results are available on request. P = Period in months. N = Sample size. C = Acceptance criteria.

High Reliability Testing

Our High Rel products are designed for optimum reliability and are burned in at elevated voltage and temperature levels. They are 100% electrically inspected to ascertain conformance to a strict performance criteria.

Applications for High Reliability products include medical implanted devices, aerospace, airborne, various military applications, and consumer uses requiring safety margins not attainable with conventional product.

We have the ability to test surface mount and leaded capacitors to High Reliability standards as detailed below, or to customer SCD.

Military performance specifications are designed and written for the voltage/capacitance ratings of the individual product slash numbers associated with the specification.

Some of the requirements of the military document may not apply to the High Reliability product. The following details the intent of the individual military specifications available for test and the deviations that may apply.

Product voltage ratings outside of the intended military specification will follow the voltage test potential outlined.

Contact the Sales Office with any requirements or deviations that are not covered here.

Environmental Testing

We also have the capability to perform all the Environmental Group B, Group C and Qualification testing to the referenced military specifications.

Testing abilities include the following:

- Nondestructive internal examination
- · Destructive physical analysis
- Radiographic inspection
- · Terminal strength
- Resistance to soldering heat
- Voltage-temperature limits
- · Temperature coefficient
- · Moisture resistance
- Humidity, steady state, low voltage
- Vibration
- Resistance to solvents
- Life
- Thermal shock and immersion
- Low temperature storage
- Barometric pressure
- Shock, specified pulseMechanical shock
- Constant acceleration
- Wire bond evaluation
- Partial discharge (corona)
- 200°C Voltage Conditioning

Military Performance Specifications

MIL-PRF-55681 (GROUP A)

General purpose military high reliability specification for surface mount sizes 0805 through 2225 in 50V and 100V.

- VOLTAGE CONDITIONING
- 100 HRS, 2X VDCW, 125°C
- DWV, IR, 125°C IR, CAP, DF TEST
- VISUAL & MECH. INSPECTION (AQL SAMPLE PLAN)
- SOLDERABILITY, SAMPLE 13(0)
- 8% PDA MAXIMUM

MIL-PRF-123 (GROUP A)

The specification affords an increased reliability level over MIL-PRF-55681 for space, missile and other high reliability applications such as medical implantable or life support equipment. The specification covers surface mount sizes 0805 through 2225 in 50V rating and various radial / axial leaded products in 50V, 100V and 200V ratings.

- THERMAL SHOCK, 20 CYCLES
- VOLTAGE CONDITIONING 168/264 HRS, 2X VDCW, 125°C
- DWV, IR, 125°C IR, CAP, DF TEST
- VISUAL & MECH. INSPECTION SAMPLE 20(0)
- DPA⁽¹⁾
- PDA, 3% (0.1%), 5% (0.2%) MAX(2)

MIL-PRF-39014 (GROUP A)

The specification covers general military purpose radial / axial leaded and encapsulated product in 50V, 100V, and 200V ratings.

- THERMAL SHOCK, 5 CYCLES
- VOLTAGE CONDITIONING 96 HRS, 2X VDCW, 125°C
- DWV, IR, 125°C IR, CAP, DF TEST
- VISUAL & MECH. INSPECTION (AQL SAMPLE PLAN)
- SOLDERABILITY, SAMPLE 13(0)
- 8% PDA MAXIMUM

MIL-PRF-49467 (GROUP A)

General purpose military high reliability specification for radial leaded epoxy coated. The specification covers sizes 1515 through 13060 with 600V, 1kV, 2kV, 3kV, 4kV and 5kV ratings.

- THERMAL SHOCK, 5 CYCLES
- VOLTAGE CONDITIONING 96 HRS, RATED VDCW, 125°C
- PARTIAL DISCHARGE (OPTION) (3)
- DWV, IR, 125°C IR, CAP, DF TEST
- VISUAL & MECH. INSPECTION SAMPLE 13(0)
- SOLDERABILITY, SAMPLE 5(0)
- 10% PDA MAXIMUM

MIL-PRF-49470 (DSCC 87106) (GROUP A)

General purpose military high reliability specification for stacked and leaded capacitors for switch mode power supplies. The specification covers sizes 2225 through 120200 in 50V, 100V, 200V and 500V ratings.

- THERMAL SHOCK, 5 CYCLES
- VOLTAGE CONDITIONING 96 HRS, 2X VDCW⁽⁴⁾, 125°C
- DWV, IR, 125°C IR, CAP, DF TEST
- VISUAL & MECH. INSPECTION SAMPLE 13(0)
- SOLDERABILITY, SAMPLE 5(0)
- 10% PDA MAXIMUM

MIL-PRF-38534

Specification for Hybrid Microcircuits with a section for Element Evaluation on passive components.

There are two classification levels of reliability. Class H is for a standard military quality level. Class K is for the highest reliability level intended for space application.

Knowles will perform a 100-hour burn-in on all Class K products and assumes Class K Subgroup 3 samples will be unmounted and Subgroup 4 (wirebond) shall not apply unless otherwise stated.

TEST VOLTAGE (VDC)

This test potential shall be used on all High Reliability Testing unless otherwise specified.

WVDC	DWV	V/C*
<200	2.5X Rated	2.0X Rated
250	500V	400V
300	500V	400V
400	600V	500V
500	750V	600V
600	750V	600V
>700	1 2X Rated	1 0X Rated

*V/C Is Voltage Conditioning.

Notes:

- 1. MIL-PRF-123 DPA shall be per TABLE XIV AQL requirements unless otherwise specified.
- 2. MIL-PRF-123 allowable PDA shall be 3% overall and 0.1% in the last 48 hours for capacitance/voltage values listed in MIL-PRF-123, and be 5% overall and 0.2% in the last 48 hours for capacitance/voltage values beyond MIL-PRF-123.
- MIL-PRF-49467 standard Group A is without Partial Discharge. Partial Discharge test is optional and must be specified.
- 4. MIL-PRF-49470 (DSCC 87106) 500V rated product has Voltage Conditioning at 1.2X VDCW.

www.knowlescapacitors.com

Regulations and Compliance

Release documentation	Knowles reliability SM product group				
	Standard SM capacitors	IECQ-CECC	AEC-Q200 MIL grade	S (Space grade) High Rel S02A	
Certificate of conformance	•	-	•	•	
IECQ-CECC Release certificate of conformity	-	•	-	-	
Batch electrical test report	0	0	0	Included in data pack	
S (space grade) data documentation package	-	-	-	•	

Release documentation supplied as standard.

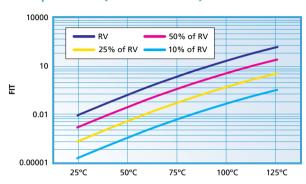
Periodic tests conducted and reliability data availability

Standard Surface Mount capacitors

Components are randomly selected on a sample basis and the following routine tests are conducted:

- Load Test. 1,000 hours @125°C (150°C for X8R). Applied voltage depends on components tested.
- Humidity Test. 168 hours @ 85°C/85%RH.
- Board Deflection (bend test).

Test results are available on request.


Conversion factors

From	То	Operation
FITS	MTBF (hours)	10° ÷ FITS
FITS	MTBF (years)	10° ÷ (FITS x 8760)

FITS = Failures in 109 hours.

MTBF = Mean time between failures.

Example of FIT (Failure In Time) data available:

Component type: 0805 (C0G/NP0 and X7R).

Knowles reliability test department. Testing location: Results based on: 16,622,000 component test hours.

REACH (Registration, Evaluation, Authorisation and restriction of Chemicals) statement

The main purpose of REACH is to improve the protection of human health and the environment from the risks arising from the use of chemicals.

Knowles maintains both ISO14001, Environmental Management System and OHSAS 18001 Health and Safety Management System approvals that require and ensure compliance with corresponding legislation such as REACH.

For further information, please contact the Knowles Capacitors Sales Office at www.knowlescapacitors.com

RoHS compliance

Knowles routinely monitors world wide material restrictions (e.g. EU/China and Korea RoHS mandates) and is actively involved in shaping future legislation.

All standard COG/NPO, X7R, X5R and High O Knowles MLCC products are compliant with the EU RoHS directive (see below for special exceptions) and those with plated terminations are suitable for soldering using common lead free solder alloys (refer to 'Soldering Information' for more details on soldering limitations). Compliance with the EU RoHS directive automatically signifies compliance with some other legislation (e.g. China and Korea RoHS). Please refer to the Knowles Capacitors Sales Office for details of compliance with other materials legislation.

Breakdown of material content, SGS analysis reports and tin whisker test results are available on request.

Most Knowles MLCC components are available with non RoHS compliant tin lead (SnPb) solderable termination finish for exempt applications and where pure tin is not acceptable. Other tin free termination finishes may also be available – please refer to the Knowles Capacitors Sales Office for further details.

Radial components have tin plated leads as standard but tin/lead is available as a special option. Please refer to the radial section of the catalogue for further details.

X8R ranges <250Vdc are not RoHS 2011/65/EU compliant. Check the website, www.knowlescapacitors.com for latest RoHS update.

Export controls and dual-use regulations

Certain Knowles catalogue components are defined as 'dual-use' items under international export controls - those that can be used for civil or military purposes which meet certain specified technical standards.

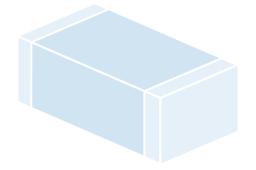
The defining criteria for a dual use component with respect to Knowles Capacitor products is one with a voltage rating of >750Vdc and a capacitance value of >250nF when measured at 750Vdc and a series inductance <10nH. Components defined as dual-use under the above criteria may require a licence for export across international borders. Please contact the Sales Office for further information on specific part numbers.

Original documentation.

Explanation of Ageing of MLC

Ageing

Capacitor ageing is a term used to describe the negative, logarithmic capacitance change which takes place in ceramic capacitors with time. The crystalline structure for barium titanate based ceramics changes on passing through its Curie temperature (known as the Curie Point) at about 125°C. This domain structure relaxes with time and in doing so, the dielectric constant reduces logarithmically; this is known as the ageing mechanism of the dielectric constant. The more stable dielectrics have the lowest ageing rates.


The ageing process is reversible and repeatable. Whenever the capacitor is heated to a temperature above the Curie Point the ageing process starts again from zero.

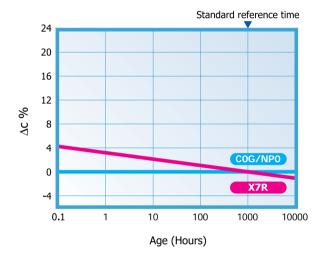
The ageing constant, or ageing rate, is defined as the percentage loss of capacitance due to the ageing process of the dielectric which occurs during a decade of time (a tenfold increase in age) and is expressed as percent per logarithmic decade of hours. As the law of decrease of capacitance is logarithmic, this means that in a capacitor with an ageing rate of 1% per decade of time, the capacitance will decrease at a rate of:

- a) 1% between 1 and 10 hours
- b) An additional 1% between the following 10 and 100 hours
- c) An additional 1% between the following 100 and 1000 hours
- d) An additional 1% between the following 1000 and 10000 hours etc
- e) The ageing rate continues in this manner throughout the capacitor's life.

Typical values of the ageing constant for our Multilayer Ceramic Capacitors are:

Dielectric class	Typical values
Ultra Stable COG/NP0	Negligible capacitance loss through ageing
Stable X7R	<2% per decade of time

Capacitance measurements


Because of ageing it is necessary to specify an age for reference measurements at which the capacitance shall be within the prescribed tolerance. This is fixed at 1000 hours, since for practical purposes there is not much further loss of capacitance after this time.

All capacitors shipped are within their specified tolerance at the standard reference age of 1000 hours after having cooled through their Curie temperature.

The ageing curve for any ceramic dielectric is a straight line when plotted on semi-log paper.

Capacitance vs time

(Ageing X7R @ <2% per decade)

Tight tolerance

One of the advantages of Knowles' unique 'wet process' of manufacture is the ability to offer capacitors with exceptionally tight capacitance tolerances.

The accuracy of the printing screens used in the fully automated, computer controlled manufacturing process allows for tolerance as close as +/-1% on COG/NPO parts greater than or equal to 10pF. For capacitance values below <4.7pF, tolerances can be as tight as +/-0.05pF.

Mounting, Soldering, Storage & Mechanical Precautions

Detailed application notes intended to guide and assist our customers in using multilayer ceramic capacitors in surface mount technology are available on the Knowles website www. knowlescapacitors.com

The information concentrates on the handling, mounting, connection, cleaning, test and re-work requirements particular to MLC's for SMD technology, to ensure a suitable match between component capability and user expectation. Some extracts are given below.

Mechanical considerations for mounted ceramic chip capacitors

Due to their brittle nature, ceramic chip capacitors are more prone to excesses of mechanical stress than other components used in surface mounting.

One of the most common causes of failure is directly attributable to bending the printed circuit board after solder attachment. The excessive or sudden movement of the flexible circuit board stresses the inflexible ceramic block causing a crack to appear at the weakest point, usually the ceramic/termination interface. The crack may initially be quite small and not penetrate into the inner electrodes; however, subsequent handling and rapid changes in temperature may cause the crack to enlarge.

This mode of failure is often invisible to normal inspection techniques as the resultant cracks usually lie under the capacitor terminations but if left, can lead to catastrophic failure. More importantly, mechanical cracks, unless they are severe may not be detected by normal electrical testing of the completed circuit, failure only occurring at some later stage after moisture ingression.

The degree of mechanical stress generated on the printed circuit board is dependent upon several factors including the board material and thickness; the amount of solder and land pattern. The amount of solder applied is important, as an excessive amount reduces the chip's resistance to cracking.

It is Knowles's experience that more than 90% are due to board depanelisation, a process where two or more circuit boards are separated after soldering is complete. Other manufacturing stages that should be reviewed include:

- Attaching rigid components such as connectors, relays, display panels, heat sinks etc.
- Fitting conventional leaded components. Special care must be exercised when rigid terminals, as found on large can electrolytic capacitors, are inserted.
- 3) Storage of boards in such a manner which allows warping.
- Automatic test equipment, particularly the type employing "bed of nails" and support pillars.
- 5) Positioning the circuit board in its enclosure especially where this is a "snap-fit".

Knowles were the first MLCC manufacturer to launch a flexible termination to significantly reduce the instances of mechanical cracking. FlexiCap $^{\text{TM}}$ termination introduces a certain amount of give into the termination layer absorbing damaging stress. Unlike similar systems, FlexiCap $^{\text{TM}}$ does not tear under tension, but absorbs the stress, so maintaining the characteristics of the MLCC.

SM Pad Design

Knowles conventional 2-terminal chip capacitors can generally be mounted using pad designs in accordance with IPC-7351, Generic Requirements for Surface Mount Design and Land Pattern Standards, but there are some other factors that have been shown to reduce mechanical stress, such as reducing the pad width to

less than the chip width. In addition, the position of the chip on the board should also be considered.

3-Terminal components are not specifically covered by IPC-7351, but recommended pad dimensions are included in the Knowles catalogue / website for these components.

Alternative Printed Wire Board Land Patterns

Printed Wire Board land pattern design for chip components is critical to ensure a reliable solder fillet, and to reduce nuisance type manufacturing problems such as component swimming and tombstoning. The land pattern suggested can be used for reflow and wave solder operations as noted. Land patterns constructed with these dimensions will yield optimized solder fillet formation and thus reduce the possibility of early failure.¹

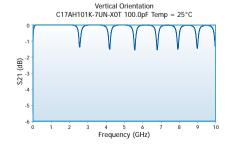
A = (Max Length) + 0.030" (.762mm)*
B = (Max Width) + 0.010" (.254mm)**

C = (Min Length) - 2 (Nominal Band)***

- * Add 0.030" for Wave Solder operations.
- ** Replace "Max Width" with "Max Thickness" for vertical mounting.

*** "C" to be no less than 0.02", change "A" to (Max Length) + 0.020".

For C04 "C" to be no less than 0.01".


1. Frances Classon, James Root, Martin Marietta Orlando Aerospace, "Electronics Packaging and Interconnection Handbook".

MLC Orientation - Horizontal and Vertical Mounting

The orientation of the MLC relative to the ground plane affects the devices' impedance. When the internal electrodes are parallel to the ground plane (Horizontal mounting) the impedance of the MLC resembles a folded transmission line driven from one end.

The graphs below show the modeled insertion loss and parallel resonances of Knowles product C17AH101K-7UN-X0T with horizontal mounting (modeling can be done in CapCad). When the internal electrodes are perpendicular to the ground plane (Vertical mounting, bottom graph) the MLC impedance resembles a folded transmission line driven from the center reducing resonance effects.

Mounting, Soldering, Storage & Mechanical Precautions

Knowles MLCCs are compatible with all recognised soldering / mounting methods for chip capacitors.

Specific application notes on mounting and soldering Knowles components are included on the website for each brand.

- For DLI brand components please see DLI application note "Recommended Solder Attachment Techniques for MLC Chip and Pre-Tinned Capacitors" located at: http://www.knowlescapacitors.com/dilabs/en/gn/resources/application-notes
- For Syfer brand components, please see Syfer application note AN0028 "Soldering / Mounting Chip Capacitors, Radial Leaded Capacitors and EMI Filters" located at: http://www.knowlescapacitors.com/syfer/en/gn/technical-info/application-notes
- For Novacap brand products please refer to the appropriate application note located at: http://www.knowlescapacitors. com/novacap/en/qn/technical-info/application-notes

The volume of solder applied to the chip capacitor can influence the reliability of the device. Excessive solder can create thermal and tensile stresses on the component which can lead to fracturing of the chip or the solder joint itself. Insufficient or uneven solder application can result in weak bonds, rotation of the device off line or lifting of one terminal off the pad (tombstoning). The volume of solder is process and board pad size dependent.

Soldering methods commonly used in industry are Reflow Soldering, Wave Soldering and, to a lesser extent, Vapour Phase Soldering. All these methods involve thermal cycling of the components and therefore the rate of heating and cooling must be controlled to preclude thermal shocking of the devices.

Without mechanical restriction, thermally induced stresses are released once the capacitor attains a steady state condition. Capacitors bonded to substrates, however, will retain some stress, due primarily to the mismatch of expansion of the component to the substrate; the residual stress on the chip is also influenced by the ductility and hence the ability of the bonding medium to relieve the stress. Unfortunately, the thermal expansion of chip capacitors differ significantly from those of most substrate materials.

Large chips are more prone to thermal shock as their greater bulk will result in sharper thermal gradients within the device during thermal cycling. Large units experience excessive stress if processed through the fast cycles typical of solder wave or vapour phase operations.

Reflow soldering Surface Mount Chip Capacitors

Knowles recommend reflow soldering as the preferred method for mounting MLCCs. Knowles MLCCs can be reflow soldered using a reflow profile generally as defined in IPC / JEDEC J-STD-020. Sn plated termination chip capacitors are compatible with both conventional and lead free soldering, with peak temperatures of 260°C to 270°C acceptable.

The heating ramp rate should be such that components see a temperature rise of 1.5°C to 4°C per seconds to maintain temperature uniformity through the MLCC. The time for which the solder is molten should be maintained at a minimum, so as to prevent solder leaching. Extended times above 230°C can cause problems with oxidation of Sn plating. Use of inert atmosphere can help if this problem is encountered. PdAg terminations can be particularly susceptible to leaching with lead free, tin rich solders and trials are recommended for this combination. Cooling to ambient temperature should be allowed to occur naturally, particularly if larger chip sizes are being soldered. Natural cooling allows a gradual relaxation of thermal mismatch stresses in the solder joints. Forced cooling should be avoided as this can induce thermal breakage.

Wave soldering Surface Mount Chip Capacitors

Wave soldering is generally acceptable, but the thermal stresses caused by the wave have been shown to lead to potential problems with larger or thicker chips. Particular care should be taken when soldering SM chips larger than size 1210 and with a thickness greater than 1.0mm for this reason. 0402 size components are not suitable for wave soldering. 0402 size components can also be susceptible to termination leaching and reflow soldering is recommended for this size MLCC.

Wave soldering exposes the devices to a large solder volume, hence the pad size area must be restricted to accept an amount of solder which is not detrimental to the chip size utilized. Typically the pad width is 66% of the component width, and the length is .030" (.760 mm) longer than the termination band on the chip. An 0805 chip which is .050" wide and has a .020" termination band therefore requires a pad .033" wide by .050" in length. Opposing pads should be identical in size to preclude uneven solder fillets and mismatched surface tension forces which can misalign the device. It is preferred that the pad layout results in alignment of the long axis of the chips at right angles to the solder wave, to promote even wetting of all terminals. Orientation of components in line with the board travel direction may require dual waves with solder turbulence to preclude cold solder joints on the trailing terminals of the devices, as these are blocked from full exposure to the solder by the body of the capacitor.

The pre-heat ramp should be such that the components see a temperature rise of 1.5°C to 4°C per second as for reflow soldering. This is to maintain temperature uniformity through the MLCC and prevent the formation of thermal gradients within the ceramic. The preheat temperature should be within 120°C maximum (100°C preferred) of the maximum solder temperature to minimise thermal shock. Maximum permissible wave temperature is 270°C for SM chips. Total immersion exposure time for Sn/Ni terminations is 30s at a wave temperature of 260°C. Note that for multiple soldering operations, including the rework, the soldering time is cumulative.

The total immersion time in the solder should be kept to a minimum. It is strongly recommended that plated terminations are specified for wave soldering applications. PdAg termination is particularly susceptible to leaching when subjected to lead free wave soldering and is not generally recommended for this application.

Cooling to ambient temperature should be allowed to occur naturally, particularly if larger chip sizes are being soldered. Natural cooling allows a gradual relaxation of thermal mismatch stresses in the solder joints. Forced cooling should be avoided as this can induce thermal breakage.

Vapour phase soldering Chip Capacitors

Vapour phase soldering can expose capacitors to similar thermal shock and stresses as wave soldering and the advice is generally the same. Particular care should be taken in soldering large capacitors to avoid thermal cracks being induced and natural cooling should be use to allow a gradual relaxation of stresses.

Hand soldering and rework of Chip Capacitors

Attachment using a soldering iron requires extra care and is accepted to have a risk of cracking of the chip. Precautions include preheating of the assembly to within 100°C of the solder flow temperature and the use of a fine tip iron which does not exceed 30 watts. In no circumstances should the tip of the iron be allowed to contact the chip directly.

Knowles recommend hot air/gas as the preferred method for applying heat for rework. Apply even heat surrounding the component to minimise internal thermal gradients.

Minimise the rework heat duration and allow components to cool naturally after soldering.

Mounting, Soldering, Storage & Mechanical Precautions

Wave soldering Radial Leaded Chip Capacitors

Radial leaded capacitors are suitable for wave soldering when mounted on the opposite side of the board to the wave. The body of radial components should not be exposed directly to the wave. Maximum permissible wave temperature is 260°C for Radial Leaded capacitors.

Hand soldering Radial Leaded capacitors

Radial capacitors can be hand soldered into boards using soldering irons, provided care is taken not to touch the body of the capacitor with the iron tip. Soldering should be carried out from the opposite side of the board to the radial to minimise the risk of damage to the capacitor body. Where possible, a heat sink should be used between the solder joint and the body, especially if longer dwell times are required.

Solder leaching

Leaching is the term for the dissolution of silver into the solder causing a failure of the termination system which causes increased ESR, tan δ and open circuit faults, including ultimately the possibility of the chip becoming detached. Leaching occurs more readily with higher temperature solders and solders with a high tin content. Pb free solders can be very prone to leaching certain termination systems. To prevent leaching, exercise care when choosing solder alloys and minimize both maximum temperature and dwell time with the solder molten.

Plated terminations with nickel or copper anti leaching barrier layers are available in a range of top coat finishes to prevent leaching occurring. These finishes also include Syfer FlexiCap $^{\text{TM}}$ for improved stress resistance post soldering.

Bonding

Hybrid assembly using conductive epoxy or wire bonding requires the use of silver palladium or gold terminations. Nickel barrier termination is not practical in these applications, as intermetallics will form between the dissimilar metals. The ESR will increase over time and may eventually break contact when exposed to temperature cycling.

Cleaning

Chip capacitors can withstand common agents such as water, alcohol and degreaser solvents used for cleaning boards. Ascertain that no flux residues are left on the chip surfaces as these diminish electrical performance.

Handling

Ceramics are dense, hard, brittle and abrasive materials. They are liable to suffer mechanical damage, in the form of chips or cracks, if improperly handled.

Terminations may be abraded onto chip surfaces if loose chips are tumbled in bulk. Metallic tracks may be left on the chip surfaces which might pose a reliability hazard.

Components should never be handled with fingers; perspiration and skin oils can inhibit solderability and will aggravate cleaning.

Chip capacitors should never be handled with metallic instruments. Metal tweezers should never be used as these can chip the product and may leave abraded metal tracks on the product surface. Plastic or plastic coated metal types are readily available and recommended - these should be used with an absolute minimum of applied pressure.

Counting or visual inspection of chip capacitors is best performed on a clean glass or hard plastic surface.

If chips are dropped or subjected to rough handling, they should be visually inspected before use. Electrical inspection may also reveal gross damage via a change in capacitance, an increase in dissipation factor or a decrease either in insulation resistance or electrical strength.

Transportation

Where possible, any transportation should be carried out with the product in its unopened original packaging. If already opened, any environmental control agents supplied should be returned to packaging and the packaging re-sealed.

Avoid paper and card as a primary means of handling, packing, transportation and storage of loose components. Many grades have a sulphur content which will adversely affect termination solderability.

Loose chips should always be packed with sulphur-free wadding to prevent impact or abrasion damage during transportation.

Storage

Incorrect storage of components can lead to problems for the user. Rapid tarnishing of the terminations, with an associated degradation of solderability, will occur if the product comes into contact with industrial gases such as sulphur dioxide and chlorine. Storage in free air, particularly moist or polluted air, can result in termination oxidation.

Packaging should not be opened until the MLCs are required for use. If opened, the pack should be re-sealed as soon as is practicable. Alternatively, the contents could be kept in a sealed container with an environmental control agent.

Long term storage conditions, ideally, should be temperature controlled between -5 and +40 $^{\circ}\text{C}$ and humidity controlled between 40 and 60% R.H.

Taped product should be stored out of direct sunlight, which might promote deterioration in tape or adhesive performance.

Product, stored under the conditions recommended above, in its "as received" packaging, has a minimum shelf life of 2 years.

Chip Marking System

If required, we can mark capacitors with the EIA 198 two digit code to show the capacitance value of the part. On chips larger than 3333, or for leaded encapsulated devices, ink marking is available. However, for chip sizes 0805 through to 3333 identification marking is accomplished by using either laser or ink jet printer. This system does not degrade the ceramic surface, or induce microcracks in the part.

Marking for other sizes may be available upon special request to determine if applicable; please contact the sales office.

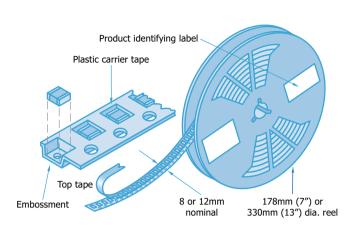
Marking is an option on Novacap and Syfer branded products and needs to be specified when ordering.

Two position alpha numeric marking is available on chip sizes 0805 through 3333.

The marking denotes retma value and significant figures of capacitance (see table) eg: A5 = 100,000pF.

Three position alpha numeric marking is available on chip sizes 1206 and larger.

The making denotes Novacap as vendor (N), followed by the standard two digit alpha numeric identification.


Marking Code - value in picofarads for alpha-numeric code

Nun	nber	0	1	2	3	4	5	6	7	9
	Α	1.0	10	100	1,000	10,000	100,000	1,000,000	10,000,000	0.1
	В	1.1	11	110	1,100	11,000	110,000	1,100,000	11,000,000	0.11
	С	1.2	12	120	1,200	12,000	120,000	1,200,000	12,000,000	0.12
	D	1.3	13	130	1,300	13,000	130,000	1,300,000	13,000,000	0.13
	Е	1.5	15	150	1,500	15,000	150,000	1,500,000	15,000,000	0.15
	F	1.6	16	160	1,600	16,000	160,000	1,600,000	16,000,000	0.16
	G	1.8	18	180	1,800	18,000	180,000	1,800,000	18,000,000	0.18
	Н	2.0	20	200	2,000	20,000	200,000	2,000,000	20,000,000	0.2
	J	2.2	22	220	2,200	22,000	220,000	2,200,000	22,000,000	0.22
	K	2.4	24	240	2,400	24,000	240,000	2,400,000	24,000,000	0.24
	L	2.7	27	270	2,700	27,000	270,000	2,700,000	27,000,000	0.27
	M	3.0	30	300	3,000	30,000	300,000	3,000,000	30,000,000	0.3
	N	3.3	33	330	3,300	33,000	330,000	3,000,000	33,000,000	0.33
	Р	3.6	36	360	3,600	36,000	360,000	3,600,000	36,000,000	0.36
	Q	3.9	39	390	3,900	39,000	390,000	3,900,000	39,000,000	0.39
<u></u>	R	4.3	43	430	4,300	43,000	430,000	4,300,000	43,000,000	0.43
Letter	S	4.7	47	470	4,700	47,000	470,000	4,700,000	47,000,000	0.47
	T	5.1	51	510	5,100	51,000	510,000	5,100,000	51,000,000	0.51
	U	5.6	56	560	5,600	56,000	560,000	5,600,000	56,000,000	0.56
	V	6.2	62	620	6,200	62,000	620,000	6,200,000	62,000,000	0.62
	W	6.8	68	680	6,800	68,000	680,000	6,800,000	68,000,000	0.68
	X	7.5	75	750	7,500	75,000	750,000	7,500,000	75,000,000	0.75
	Υ	8.2	82	820	8,200	82,000	820,000	8,200,000	82,000,000	0.82
	Z	9.1	91	910	9,100	91,000	920,000	9,200,000	92,000,000	0.91
	а	2.5	25	250	2,500	25,000	250,000	2,500,000	25,000,000	0.25
	b	3.5	35	350	3,500	35,000	350,000	3,500,000	35,000,000	0.35
	d	4.0	40	400	4,000	40,000	400,000	4,000,000	40,000,000	0.4
	е	4.5	45	450	4,500	45,000	450,000	4,500,000	45,000,000	0.45
	f	5.0	50	500	5,000	50,000	500,000	5,000,000	50,000,000	0.5
	m	6.0	60	600	6,000	60,000	600,000	6,000,000	60,000,000	0.6
	n	7.0	70	700	7,000	70,000	700,000	7,000,000	70,000,000	0.7
	t	8.0	80	800	8,000	80,000	800,000	8,000,000	80,000,000	0.8
	у	9.0	90	900	9,000	90,000	900,000	9,000,000	90,000,000	0.9

www.knowlescapacitors.com

Ceramic Chip Capacitors - Packaging information

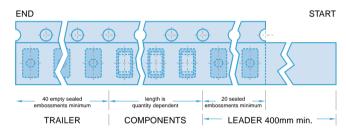
Tape and reel packing of surface mounting chip capacitors for automatic placement are in accordance with IEC60286-3.

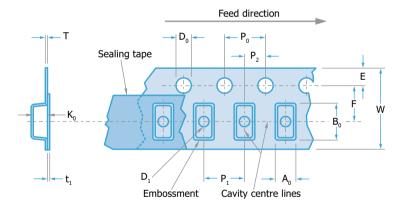
Symbol	Description	178mm reel	330mm reel
Α	Diameter	178 (7)	330 (13)
G	Inside width	8.4 (0.33)	12.4 (0.49)
Т	Outside width	14.4 (0.56) max	18.4 (0.72) max

Peel force

The peel force of the top sealing tape is between 0.2 and 1.0 Newton at 180°. The breaking force of the carrier and sealing tape in the direction of unreeling is greater than 10 Newtons.

Identification


Each reel is labelled with the following information: manufacturer, chip size, capacitance, tolerance, rated voltage, dielectric type, batch number, date code and quantity of components.

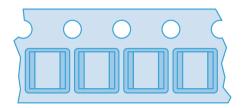

Missing components

Maximum number of missing components shall be 1 per reel or 0.025% whichever is greater. There shall not be consecutive components missing from any reel for any reason.

Tape dimensions

Leader and Trailer

		Dimensions I	mm (inches)
Symbol	Description	8mm tape	12mm tape
$egin{aligned} \mathbf{A}_{\mathrm{o}} \\ \mathbf{B}_{\mathrm{o}} \\ \mathbf{K}_{\mathrm{o}} \end{aligned}$	Width of cavity Length of cavity Depth of cavity	Dependent on chip siz	e to minimize rotation
W	Width of tape	8.0 (0.315)	12.0 (0.472)
F	Distance between drive hole centres and cavity centres	3.5 (0.138)	5.5 (0.213)
Е	Distance between drive hole centres and tape edge	1.75 (0	0.069)
P ₁	Distance between cavity centres	4.0 (0.156)	8.0 (0.315)
$P_{_2}$	Axial distance between drive hole centres and cavity centres	2.0 (0	.079)
P_0	Axial distance between drive hole centres	4.0 (0	.156)
D_0	Drive hole diameter	1.5 (0	.059)
D_1	Diameter of cavity piercing	1.0 (0.039)	1.5 (0.059)
T	Carrier tape thickness	0.3 (0.012) ±0.1 (0.004)	0.4 (0.016) ±0.1 (0.004)
t,	Top tape thickness	0.1 (0.00	04) max

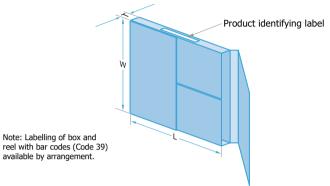

Ceramic Chip Capacitors - Packaging information

Component orientation

Tape and reeling is in accordance with IEC 60286 part 3, which defines the packaging specifications of lead less components on continuous tapes.

Notes: 1) IEC60286-3 states Ao \leq Bo (see tape dimensions on page 18).

 Regarding the orientation of 1825 and 2225 components, the termination bands are right to left, NOT front to back. Please see diagram.



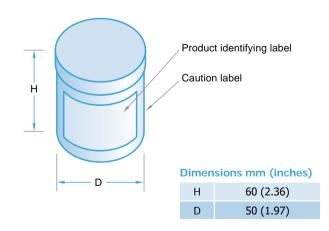
Orientation of 1825 & 2225 components

Outer Packaging

Outer carton dimensions mm (inches) max.

Reel Size	No. of reels	L	W	Т
178 (7.0)	1	185 (7.28)	185 (7.28)	25 (0.98)
178 (7.0)	4	190 (7.48)	195 (7.76)	75 (2.95)
330 (13.0)	1	335 (13.19)	335 (13.19)	25 (0.98)

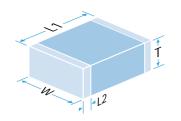
Reel quantities - Novacap, Syfer and Voltronics products


Chip size	0402	0505	0603	0805	1111	1206	1210	1410	1515	1808	1812	1825	2211	2215	2220	2221	2225	2520	3333	3530	3640	4540	5550	6560	7565
Max. ch	Max. chip thickness																								
mm	0.61	1.3	0.89	1.37	1.8	1.63	2.0	2.0	3.3	2.0	3.2	4.2	2.5	2.5	4.2	2.0	4.2	4.57	6.35	6.35	4.2	7.62	7.62	7.62	7.62
inches	0.02"	0.05"	0.03"	0.05"	0.07"	0.06"	0.08"	0.08"	0.13"	0.08"	0.13"	0.165″	0.1"	0.1"	0.165″	0.08"	0.165"	0.18"	0.25"	0.25"	0.165"	0.3"	0.3"	0.3"	0.3"
Reel qu	antitie	s																							
178mm (7")	10k	2500	4000	3000	1000	2500	2000	2000	500	1500	500	500	750	500	500	1000	500	1000	-	-	-	-		-	-
330mm (13")	15k	10k	16k	12k	5000	10k	8000	8000	-	6000	2000	2000	4000	2000	2000	-	2000	1000	1000	500	500	500	500	500	200

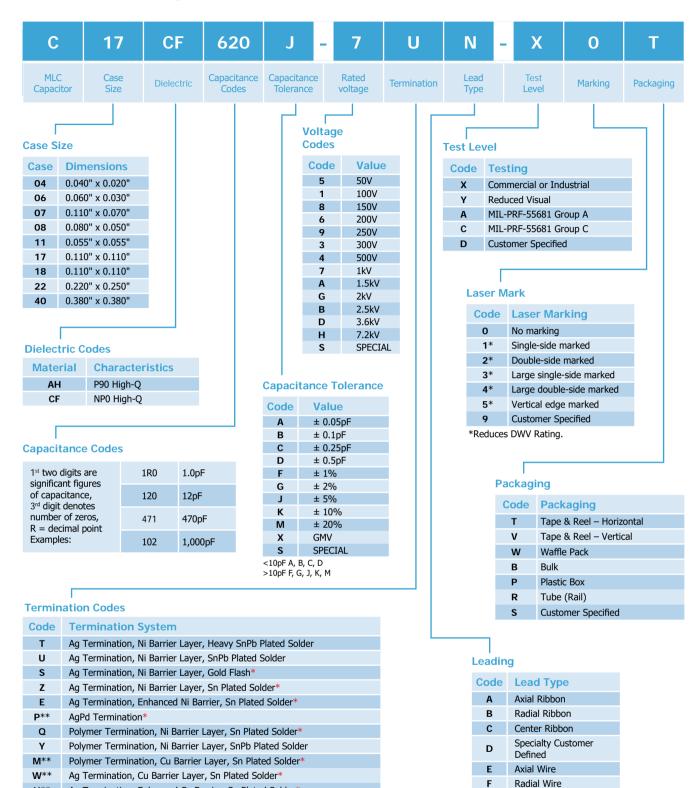
Packaging configurations - DLI products

Chi	p size		Reel, Tape	7" Reel, 16mm Tape	13" Reel, 16mm Tape	2" x 2" Waffle Pack
Style	LxW	Horizontal Orientation	Vertical Orientation	Horiz Orien		ruon
C04	0.040" x 0.020"	4000	-	-	-	-
C06	0.060" x 0.030"	4000	-	-	-	108
C07	0.110" x 0.070"	2000	-	-	-	-
C08	0.080" x 0.050"	5000	3100	-	-	108
C11	0.055" x 0.055"	3500	3100	-	-	108
C17	0.110" x 0.110"	2350	750	-	-	49
C18	0.110" x 0.110"	2350	750	-	-	49
C22	0.220" x 0.245"	500	-	-	-	-
C40	0.380" x 0.380"	250	-	250	1300	-

Bulk packaging, tubs


Chips can be supplied in rigid re-sealable plastic tubs together with impact cushioning wadding. Tubs are labelled with the details: chip size, capacitance, tolerance, rated voltage, dielectric type, batch number, date code and quantity of components.

Chip dimensions



- 2. For special ranges, inc. High Q and Ultra-low ESR, dimensions may vary. See individual catalogue page.
- 3. High Q and Ultra-low ESR ranges dimensions may vary for optimum performance.
- 4. Non-standard thicknesses are available consult local Knowles Capacitors Sales Office.

Size	Length (L1)	Width (w)	Max. Thickness (T)	Terminatio	n Band (L2)
	mm ~ inches	mm ~ inches	mm ~ inches	min (mm ~ inches)	max (mm ~ inches)
0402	$1.0 \pm 0.10 \sim 0.04 \pm 0.004$	$0.50 \pm 0.10 \sim 0.02 \pm 0.004$	0.60 ~ 0.024	0.10 ~ 0.004	0.40 ~ 0.016
C04	1.057 ± 0.188 ~ 0.042 ± 0.008	$0.515 \pm 0.153 \sim 0.02 \pm 0.006$	0.64 ~ 0.025	0.097 ~ 0.004	0.427 ~ 0.017
0504	1.27 ± 0.152 ~ 0.050 ± 0.006	$1.02 \pm 0.152 \sim 0.04 \pm 0.006$	1.12 ~ 0.044	0.20 ~ 0.008	0.50 ~ 0.02
0505	1.4 +0.35 -0.25 ~ 0.055 +0.014 -0.01	1.4 ± 0.25 ~ 0.055 ± 0.01	1.27 ~ 0.05	0.13 ~ 0.005	0.5 ~ 0.02
RF0505	$1.4 \pm 0.13 \sim 0.055 \pm 0.005$	1.4 ± 0.381 ~ 0.055 ± 0.015	1.45 ~ 0.057	0.20 ~ 0.008	0.50 ~ 0.02
C11	$1.477 \pm 0.391 \sim 0.059 \pm 0.016$	$1.416 \pm 0.451 \sim 0.056 \pm 0.018$	1.334 ~ 0.053	0.193 ~ 0.008	0.733 ~ 0.029
0603	$1.6 \pm 0.15 \sim 0.063 \pm 0.006$	$0.8 \pm 0.15 \sim 0.032 \pm 0.006$	0.90 ~ 0.036	0.20 ~ 0.004	0.40 ~ 0.016
C06	$1.532 \pm 0.229 \sim 0.06 \pm 0.009$	0.77 ± 0.191 ~ 0.031 ± 0.008	0.8 ~ 0.032	0.169 ~ 0.007	0.680 ~ 0.027
C07	1.797 ± 0.470 ~ 0.071 ± 0.019	2.813 ± 0.521 ~ 0.111 ± 0.021	2.667 ~ 0.105	0.193 ~ 0.008	1.20 ~ 0.047
0805	$2.0 \pm 0.20 \sim 0.079 \pm 0.008$	$1.25 \pm 0.20 \sim 0.049 \pm 0.008$	1.37 ~ 0.054	0.25 ~ 0.010	0.75 ~ 0.030
C08	2.048 ± 0.407 ~ 0.081 ± 0.016	1.28 ± 0.267 ~ 0.051 ± 0.011	1.360 ~ 0.054	0.362 ~ 0.014	1.04 ~ 0.041
0907	$2.3 \pm 0.30 \sim 0.090 \pm 0.012$	$1.8 \pm 0.30 \sim 0.070 \pm 0.012$	1.52 ~ 0.06	0.25 ~ 0.010	0.75 ~ 0.030
1005	2.54 ± 0.203 ~ 0.100 ± 0.008	1.27 ± 0.203 ~ 0.050 ± 0.008	1.37 ~ 0.054	0.25 ~ 0.010	0.75 ~ 0.030
1111	2.79 +0.51 -0.25 ~ 0.11 +0.02 -0.01	2.79 ± 0.38 ~ 0.113 ± 0.015	1.78 ~ 0.07	0.13 ~ 0.005	0.63 ~ 0.025
RF1111	2.79 ± 0.39 ~ 0.110 ± 0.005	2.79 ± 0.381 ~ 0.110 ± 0.015	2.59 ~ 0.102	0.25 ~ 0.010	0.75 ~ 0.030
C17	2.94 ± 0.527 ~ 0.116 ± 0.021	2.813 ± 0.521 ~ 0.111 ± 0.021	2.667 ~ 0.105	0.193 ~ 0.008	1.2 ~ 0.047
C18	3.14 ± 0.727 ~ 0.124 ± 0.029	2.946 ± 0.654 ~ 0.116 ± 0.026	2.667 ~ 0.105	0.193 ~ 0.008	1.2 ~ 0.047
1206	$3.2 \pm 0.20 \sim 0.126 \pm 0.008$	$1.6 \pm 0.20 \sim 0.063 \pm 0.008$	1.70 ~ 0.068	0.25 ~ 0.010	0.75 ~ 0.030
1210	$3.2 \pm 0.20 \sim 0.126 \pm 0.008$	$2.5 \pm 0.20 \sim 0.098 \pm 0.008$	2.0 ~ 0.08	0.25 ~ 0.010	0.75 ~ 0.030
1515	$3.81 \pm 0.381 \sim 0.150 \pm 0.015$	$3.81 \pm 0.381 \sim 0.150 \pm 0.015$	3.3 ~ 0.13	0.381 ~ 0.015	1.143 ~ 0.045
1808	$4.5 \pm 0.35 \sim 0.180 \pm 0.014$	$2.0 \pm 0.30 \sim 0.08 \pm 0.012$	2.0 ~ 0.08	0.25 ~ 0.01	1.0 ~ 0.04
1812	$4.5 \pm 0.30 \sim 0.180 \pm 0.012$	$3.2 \pm 0.20 \sim 0.126 \pm 0.008$	3.2 ~ 0.125	0.25 ~ 0.010	1.143 ~ 0.045
1825	$4.5 \pm 0.30 \sim 0.180 \pm 0.012$	$6.40 \pm 0.40 \sim 0.252 \pm 0.016$	4.2 ~ 0.16	0.25 ~ 0.010	1.0 ~ 0.04
2020	$5.0 \pm 0.40 \sim 0.197 \pm 0.016$	$5.0 \pm 0.40 \sim 0.197 \pm 0.016$	4.5 ~ 0.18	0.25 ~ 0.01	1.0 ~ 0.04
2220	$5.7 \pm 0.40 \sim 0.225 \pm 0.016$	$5.0 \pm 0.40 \sim 0.197 \pm 0.016$	4.2 ~ 0.165	0.25 ~ 0.01	1.0 ~ 0.04
2211	$5.7 \pm 0.40 \sim 0.225 \pm 0.016$	$2.79 \pm 0.30 \sim 0.11 \pm 0.012$	2.5 ~ 0.1	0.25 ~ 0.01	0.8 ~ 0.03
2215	5.7 ± 0.40 ~ 0.225 ± 0.016	$3.81 \pm 0.35 \sim 0.35 \pm 0.02$	2.5 ~ 0.1	0.25 ~ 0.01	0.8 ~ 0.03
2221	$5.59 \pm 0.381 \sim 0.220 \pm 0.015$	$5.33 \pm 0.381 \sim 0.210 \pm 0.015$	2.03 ~ 0.08	0.381 ~ 0.015	1.143 ~ 0.045
2225	$5.7 \pm 0.40 \sim 0.225 \pm 0.016$	$6.30 \pm 0.40 \sim 0.252 \pm 0.016$	4.2 ~ 0.165	0.381 ~ 0.01	1.143 ~ 0.045
C22	$5.734 \pm 0.667 \sim 0.226 \pm 0.026$	6.37 ± 0.699 ~ 0.251 ± 0.028	3.467 ~ 0.137	N/A	N/A
2520	$6.35 \pm 0.40 \sim 0.250 \pm 0.016$	$5.08 \pm 0.40 \sim 0.200 \pm 0.016$	4.57 ~ 0.18	0.381 ~ 0.015	1.143 ~ 0.045
RF2525	$5.84 \pm 0.21 \sim 0.230 \pm 0.008$	$6.35 \pm 0.381 \sim 0.250 \pm 0.015$	4.19 ~ 0.165	0.381 ~ 0.015	1.143 ~ 0.045
3333	8.38 ± 0.432 ~ 0.330 ± 0.017	$8.38 \pm 0.432 \sim 0.330 \pm 0.017$	6.35 ~ 0.25	0.381 ~ 0.015	1.143 ~ 0.045
3530	$8.89 \pm 0.457 \sim 0.350 \pm 0.018$	$7.62 \pm 0.381 \sim 0.300 \pm 0.015$	6.35 ~ 0.25	0.381 ~ 0.015	1.143 ~ 0.045
3640	$9.2 \pm 0.50 \sim 0.36 \pm 0.02$	$10.16 \pm 0.50 \sim 0.40 \pm 0.02$	4.5 ~ 0.18	0.50 ~ 0.02	1.50 ~ 0.06
C40	9.732 ± 0.804 ~ 0.384 ± 0.032	8.665 ± 1.737 ~ 0.381 ± 0.029	3.467 ~ 0.137	N/A	N/A
4040	10.2 ± 0.508 ~ 0.400 ± 0.020	10.2 ± 0.508 ~ 0.400 ± 0.020	7.62 ~ 0.30	0.50 ~ 0.02	1.50 ~ 0.06
4540	11.4 ± 0.584 ~ 0.450 ± 0.023	10.2 ± 0.508 ~ 0.400 ± 0.020	7.62 ~ 0.30	0.50 ~ 0.02	1.50 ~ 0.06
5440	13.7 ± 0.686 ~ 0.540 ± 0.027	10.2 ± 0.508 ~ 0.400 ± 0.020	7.62 ~ 0.30	0.50 ~ 0.02	1.50 ~ 0.06
5550	$14.0 \pm 0.711 \sim 0.550 \pm 0.028$	12.7 ± 0.635 ~ 0.500 ± 0.025	7.62 ~ 0.30	0.50 ~ 0.02	1.50 ~ 0.06
6560	16.5 ± 0.838 ~ 0.650 ± 0.033	15.2 ± 0.762 ~ 0.600 ± 0.030	7.62 ~ 0.30	0.50 ~ 0.02	1.50 ~ 0.06
7565	19.1 ± 0.965 ~ 0.750 ± 0.038	16.5 ± 0.838 ~ 0.650 ± 0.033	7.62 ~ 0.30	0.50 ~ 0.02	1.50 ~ 0.06
8060	20.3 ± 0.5 ~ 0.80 ± 0.02	15.24 ± 0.50 ~ 0.60 ± 0.02	4.2 ~ 0.165	0.50 ~ 0.02	1.50 ~ 0.06

Chip ordering information - DLI parts

Lead Termination Codes Leads are attached with high melting point solder (HMP) at 296°C.

Ag Termination, Enhanced Cu Barrier, Sn Plated Solder*

Ag Termination, Cu Barrier Layer, Heavy SnPb Plated Solder

Ag Termination, Cu Barrier Layer, SnPb Plated Solder

Axial Ribbon - Code A	Radial Ribbon - Code B	Center Ribbon - Code C	Axial Wire Lead - Code E	Radial Wire Lead - Code F

NONE

Note: Consult your local Sales Office for RoHS compliant leaded

** Nonmagnetic *Indicates RoHS terminations

H**

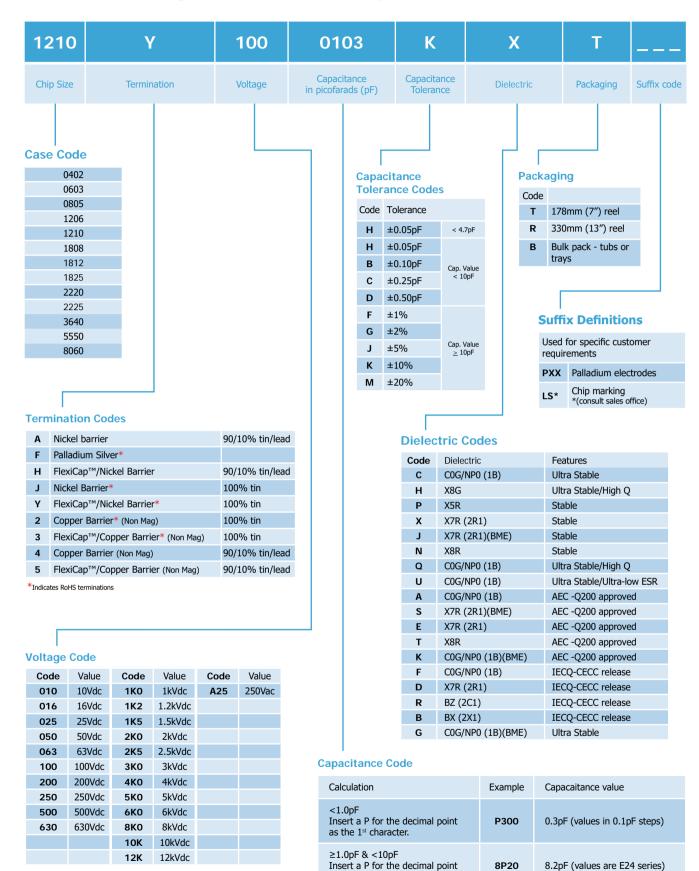
Chip ordering information - Novacap parts

XX	(120	06	N	472		J 101		N	J	X05	o	н		Т	ı	VI	HE	3	
Prefi	x Case S	iize	Dielectric	Capacitance Codes		citance rance	Volt	age	Termination .		Specia Thickne		High Reliability Testing	Pac	kaging	Mai	rking	High Reliabi Test Crit	lity
Prefix None RF ST SM CR					None	al Thick Standard thickness Novacap specificat Denotes thickness than star Specify ir if require (As show	as per catalo cions a spec other adard. n inche	er g cial		ackag	M lote: Re	ng Unmark Marked *Marking i available c sizes ≤ 06 for to pai	not on 03						
)ielec	ctric Code										$\dot{X} = 0.05$	0")			W	Waffle	Pack		
N	C0G/NP0		ra Stable																
K	R3L		ra Stable							Г					Г				
В	X7R	Sta								High I	Reliabil	ity			High	Relia	bility		
W	X5R	Sta							1	Гestir	ng				Testi	ng Cr	iteria		
Х	BX	MII								None	Standar	d prod	luct	_	НВ	MIL-P	RF-556	81 Group	Α
BB	X7R		ble BME						i	н	High Re	liability	/ Testing	J	HV			67 Group	
BW	X5R		ble BME							Н	High Te		_	1	HS			Group A	
M	C0G/NP0		n Magnetic							•••	riigii re	пр эс	recining						,
C F	X7R		n Magnetic	to 1600C)									_		HK	MIT-P	KF-385	34 Class I	(
D, RD	COG/NP0 COG/NP0	_	ıh Temp. (uı ıh Temp. (uı	•															
S S	X8R	_	ın Temp. (uı ıh Temp. (uı				' Voltag	ge Co	de			Tern	nination	Code	es				
E, RE	Class II	_	ın Temp. (u _l ıh Temp. (u _l				1ct tur	a diaita	are sig	ınifican	t	Р	Palladium	Silver					
G G	Class II			•			third d	igit de	notes n	umber	ι,	PR	Palladium						
RN	COG/NP0	5 - 1 (-1					of zeros. For example:					K	Solderabl			Silver*			
RB	X7R Lead free						160	16 V	olts			N	Nickel Ba				100%	tin	
N.D	, , , ,						101	100	Volts		Υ	Nickel Ba					n, 10% l	ea	
						i	501	500 Volts							Nickel Barrier Gold Flas			,	
							102 1,000 Volts						FlexiCap™/Nickel Barr						
						502 5,000 Volts						FlexiCap™/Nickel Barrier			n, 10% l	ea			
												В	Copper B	•			100%		
apaci	itance Cod	es					103	10,0	00 Volts	5									

Capacitance Codes

1st two digits	1R0	1.0pF
are significant figures of	120	12pF
capacitance, 3 rd digit	471	470pF
denotes	102	1,000pF
number of zeros, R =	273	0.027µF
decimal point Examples:	474	0.47µF
	105	1.0µF

Capa	pacitance Tolerance Codes											
Code	Tolerance			C0G/NP	0	R3L	X	7R	ВХ	X8R	Class II	X5R
	* Not RF se	ries	N	М	F/D, RD	K	В	C, RE	Χ	S	E/G	W
В	±0.10pF	C	•	•								
С	±0.25pF	Cap. Value < 10pF	•	•		•						
D	±0.50pF	< 10bc	•	•		•						
F	±1%		•	•	•							
G	±2%		•	•	•	•						
J	±5%		•	•	•	•	•*	•	•*	•	•	
K	±10%		•	•	•	•	•	•	•	•	•	•
M	±20%		•		•	•	•	•	•	•	•	•


E Copper Barrier

S Silver*

*Indicates RoHS terminations

90% tin, 10% lead

Chip ordering information - Syfer parts

www.knowlescapacitors.com

2nd and 3rd digits are significant

figures of capacitance value. 4th digit is number of zeros.

0101

100pF (values are E24 series)

as the 2nd character.

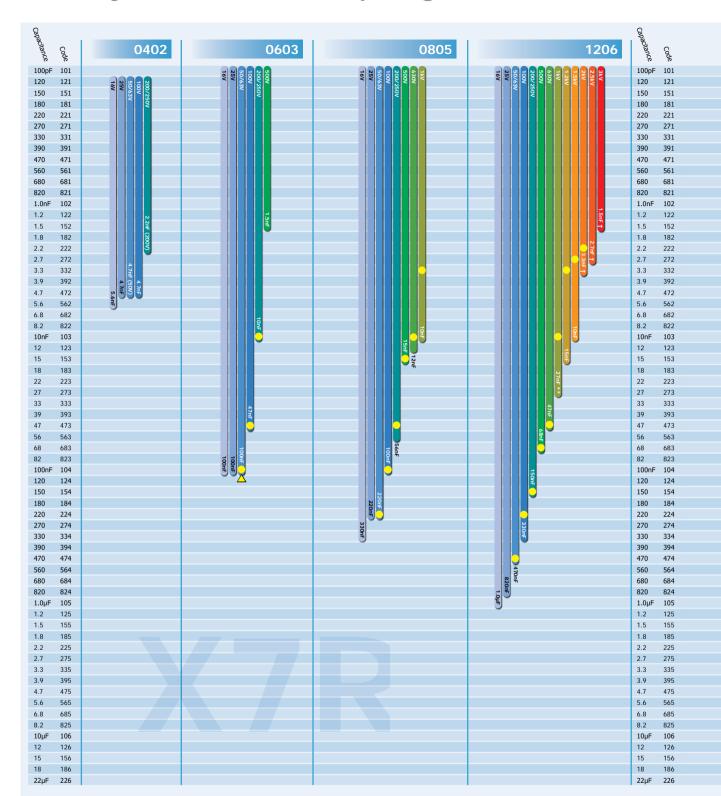
≥10pF 1st digit is 0.

MLCC standard range - 10V to 12kVdc

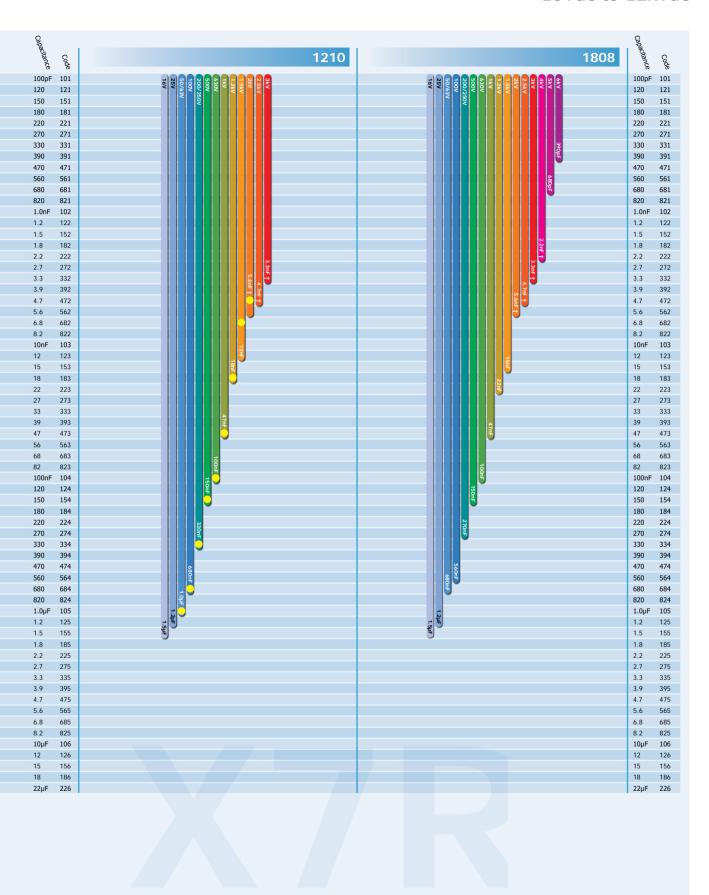
	10	V		16V			25V		5	0/63	V	10	OV	20 25	0/ 0V	50	ov	63	OV	1k	cV
	COG/ NPO	X5R	COG/ NPO	X7R	X5R	COG/ NPO	X7R	X5R	COG/ NPO	X7R	X5R	COG/ NPO	X7R	COG/ NPO	X7R	COG/ NPO	X7R	COG/ NPO	X7R	COG/ NPO	X7R
0402	-	_	0.3p - 270p	120p - 5.6n	-	0.3p - 220p	120p - 4.7n	_	0.3p - 180p	120p - 4.7n	-	0.3p - 180p	120p - 4.7n	0.3p - 100p	120p - 2.2n	_	_	_	-	_	-
0603	0.47p - 3.9n	120n - 150n	0.47p - 2.7n	100p - 100n	120n	0.47p - 2.2n	100p - 100n	_	0.47p - 1.5n	100p - 100n	56n - 68n	0.47p - 470p	100p - 47n	0.47p - 220p	100p - 10n	0.47p - 150p*	100p - 1.5n*	-	-	-	-
0805	1.0p - 15n	390n - 680n	1.0p - 12n	100p - 330n	390n - 470n	1.0p - 10n	100p - 220n	270n - 390n	1.0p - 5.6n	100p - 220n	270n - 330n	1.0p - 2.2n	100p - 100n	1.0p - 1.0n	100p - 56n	1.0p - 820p	100p - 15n	1.0p - 820p	100p - 12n	1.0p - 180p	100p - 10n
1206	1.0p - 47n	1.2µ - 1.5µ	1.0p - 33n	100p - 1.0µ	1.2µ	1.0p - 27n	100p - 820n	1.0µ	1.0p - 22n	100p - 470n	560n - 680n	1.0p - 8.2n	100p - 330n	1.0p - 3.9n	100p - 150n	1.0p - 2.7n	100p - 68n	1.0p - 2.7n	100p - 47n	1.0p - 1.5n	100p - 27n
1210	3.9p	1.8µ	3.9p	100p	1.8µ	3.9p -	100p -	1.5µ	3.9p -	100p -	1.2µ -	3.9p -	100p -	3.9p -	100p -	3.9p	100p -	3.9p -	100p -	3.9p	100p -
1808	100n 4.7p	3.3µ 1.8µ -	68n 4.7p	1.5µ 100p -	2.7µ 1.8µ -	56n 4.7p -	1.2µ 100p -	2.2µ 1.5µ	33n 4.7p	1.0µ 100p -	1.5µ 820n -	18n 4.7p	680n 100p -	8.2n 4.7p	330n 100p -	6.8n 4.7p	150n 100p -	6.8n 4.7p	100n 100p -	2.2n 4.7p	47n 100p -
1812	100n 10p	2.7µ 3.9µ	68n 10p	1.5µ 150p	2.2µ 3.9µ	47n 10p	1.2µ 150p	2.7µ	33n 10p	680n 150p	1.0μ 2.7μ -	18n 10p	560n 150p	8.2n 10p	270n 150p	6.8n	150n 150p	6.8n	100n 150p	2.2n 10p	47n 150p
T=2.5mm	220n		180n	3.3µ	6.8µ	150n	2.2µ	4.7µ	100n	2.2µ	3.3µ	47n	1.5µ	22n	680n 820n	15n 18n	330n 390n	10n 12n	180n 220n	6.8n	100n 120n
T=3.2mm	10p	 5.6µ	10p	 220p	 5.6µ	10p	 220p	4.7µ	10p	 220р	_ 2.2µ	10p	 220p	27n 10p	1000n 220p	22n 10p	470n 220p	22n 10p	330n 220p	8.2n 10p	1 <mark>80</mark> n
1825 T=2.5mm	- 470n	- 15µ	- 330n	- 4.7µ	- 12µ	- 220n	- 3.9µ	- 10µ	- 150n	- 2.2µ	- 6.8µ	- 68n	- 1.5µ	33n 39n	- 1.0µ	- 27n	- 560n	- 22n	- 200n	12n	- 200n
1825 T=3.2mm	- 100		100		_	- 100			100			100		- 47n		33n		27n		15n	
2220 T=2.5mm	10p - 470n	6.8µ - 18µ	10p - 330n	220p - 5.6µ	6.8µ - 12µ	10p - 220n	220p - 4.7µ	5.6µ - 10µ	10p - 150n	220p - 3.3µ	3.9µ - 6.8µ	10p - 68n	220p - 2.2µ	10p - 33n	220p - 1.0µ	10p - 22n	220p - 560n	10p - 18n	220p - 330n	10p - 15n	220p - 120n
2220 T=4.2mm	-	_	_	-	_	_	-	_	_	-	-	-	-	39n - 56n	1.2µ - 2.2u	27n - 39n	680n - 1µ	22n - 33n	390n - 1µ	18n - 22n	150n - 470n
2225 T=2.5mm	10p - 560n	8.2µ - 22µ	10p - 470n	330p - 6.8µ	8.2µ - 15µ	10p - 330n	330p - 5.6µ	6.8µ - 12µ	10p - 220n	330p - 3.3µ	3.9µ - 10µ	10p - 82n	330p - 2.7µ	10p - 47n	330p - 1.5µ	10p - 33n	330p - 820n	10p - 22n	330p - 390n	10p - 18n	330p - 150n
2225 T=4.0mm	_		_	_		_			_			_		56n - 68n		39n - 47n		27n - 39n	_	22n - 27n	_
3640 T=2.5mm	-	_	_	-	_	-	-	_	10p - 330n	470p - 10µ	-	10p - 270n	470p - 5.6µ	10p - 120n	470p - 3.3µ	10p - 82n	470p - 1.0μ	10p - 68n	470p - 680n	10p - 47n	470p - 180n
3640 T=4.0mm	_		_	_	_	_	_	_	_	_	-	_	_	150n - 180n	3.9µ - 5.6µ	100n - 120n	1.2µ - 2.7µ	82n - 100n	820n - 2.2µ	56n - 82n	220n - 1µ
5550 T=2.5mm	-		1						27p - 680n	1.0n - 15µ	_	27p - 470n	1.0n - 10µ	27p - 270n	1.0n - 5.6µ	27p - 180n	1.0n - 1.8µ	27p - 120n	1.0n - 1.2µ	27p - 82n	1.0n - 390n
5550 T=4.0mm	_		(<			W		5	—		_	-	тор —	330n	- J.ομ	220n	1.0μ —	150n	т.zµ —	100n	—
8060	_			05, 111	1 and	S-Novacap-Sy 2211 ca ecialty r	se sizes	cs	47p	2.2n -	_	47p -	2.2n -	47p -	2.2n -	270n 47p	2.2n -	180n 47p	2.2n -	150n 47p	2.2n -
T=2.5mm						vant se e details		of	1.0µ —	22µ —		680n	15µ —	390n 470n	10µ —	270n 330n	3.3µ —	220n 270n	2.2µ —	150n 180n	1.0µ —
T=4.0mm	10)V		16V			25V		F.	0/63	V	10	οV	560n		470n	οV	390n	οV	270n	cV.
	10	V		101			23 V		- 3	J/ U3		10		25	OV	30		03		11	V

Notes: 1) Capacitance in F - min value above max value. 2) *These parts may require conformal coating post soldering. 3) T = Maximum thickness.

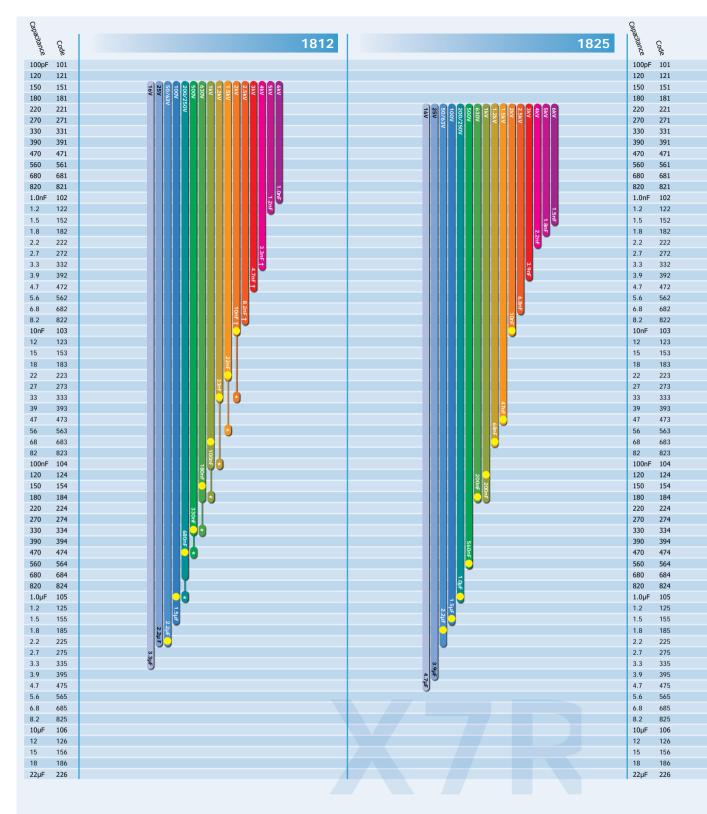
4) 'Higher capacitance values available from the NC range - see page 63. 5) StackiCap™ high capacitance versions are now available. Please refer to datasheet.


6) Parts in this range may be defined as dual-use under export control legislation as such may be subject to export licence restrictions. Please refer to p12 for more information on the dual-use regulations and contact the Sales Office for further information on specific part numbers.

1.2kV	2kV 1.5kV		2kV		2.5kV		3kV		4kV		5kV		6kV		8kV		10kV		12kV		
COG/ NPO X7R	COG/ NPO X	7R	COG/ NPO	X7R	COG/ NPO	X7R	COG/ NPO	X7R	COG/ NPO	X7R	COG/ NPO	X7R	COG/ NPO	X7R	COG/ NPO	X7R	COG/ NPO	X7R	COG/ NPO	X7R	
	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	0402
	-	_	-	_	_	-	_	_	_	_	-	_	_	_	-	_	_	_	_	-	0603
1.0p - 120p	1.0p - 82p	_	1.0p - 47p	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	0805
1.0p 100p 		00p - 10n	1.0p - 220p	100p - 3.3n [†]	1.0p - 100p	100p - 2.7n†	1.0p - 68p	100p - 1.5n [†]	_	_	-	_	_	_	-	_	_	-	_	_	1206
3.9p 100p - 1.5n 18n	3.9p 10	00p - 12n	3.9p - 470p	100p - 5.6n [†]	3.9p - 220p	100p - 4.7n [†]	3.9p - 150p	100p - 3.3n [†]	_	_	_	_	_	_	_	_	_	_	_	_	1210
4.7p 100p - 1.5n 22n	4.7p 10	00p - 15n	4.7p - 470p	100p - 5.6n [†]	4.7p - 270p	100p - 4.7n [†]	4.7p - 220p	100p - 3.3n [†]	4.7p - 120p*	100p - 2.2n*†	4.7p - 68p*	100p - 680p*†	4.7p - 47p*	100p - 390p*†	_	_	_	_	_	_	1808
10p 150p	10p 15	50p - 22n	10p	150p -	10p	150p -	10p	150p -	10p	150p -	10p -	150p	10p	150p -	_	_	_	_	_	_	1812 T=2.5mm
4.7n 33n 5.6n 39n - 6.8n 100n	3.3n	27n - 56n	1.5n 1.8n	10n [†] 12n - 33n	820p	8.2n [†]	560p 680p	4.7n [†]	270p* 330p - 390p*	3.3n*† —	180p* 220p - 270p*	1.2n*† —	120p* 150p - 180p*	1.0n*†	_	_	_	_	_	_	1812 T=3.2mm
10p 220p	10p 22	20p -	10p	220p -	10p	220p	10p	220p	10p	220p	10p	220p	10p	220p	_	_	_	_	_	_	1825 T=2.5mm
6.8n 68n 8.2n	5.6n	47n —	3.3n 3.9n	10n —	1.5n 1.8n	6.8n —	1.2n 1.5n	3.9n —	560p* 680p*	2.2n* —	390p* 470p*	1.8n* —	270p* 330p*	1.5n* —	_	_	_	_	_		1825 T=3.2mm
10n 220p		20p -	10p	220p	2.2n	220p	10p	220p	10p	220p	10p	220p	10p	220p	_	_	_	_	_	_	2220 T=2.5mm
10n 82n 12n 100n	6.8n 5	17n 50n -	3.3n 3.9n	33n 39n -	1.8n 2.2n	22n† —	1.5n 1.8n	10n† —	680p* 820p	6.8n*†	470p* 560p	4.7n*† _	330p* 390p	2.2n*† —	_	_	_	_	_		2220
15n 220n 10p 330p	10p 33	50n 30p -	5.6n 10p -	330p -	3.3n 10p	330p -	2.2n 10p	330p -	1.2n* 10p	330p -	820p* 10p	330p -	560p* 10p	330p -	_	_	_	_	_	_	2225
12n 100n 15n	6.8n 6	58n —	4.7n 5.6n	33n —	2.2n 2.7n	12n —	1.8n 2.2n	8.2n —	820p* 1.0n	5.6n* —	560p* 680p	4.7n* —	470p	2.7n* —	_	_	_	_	_		T=2.5mm 2225
22n 10p 470p	12n 10p 47	70p -	6.8n 10p	470p -	3.9n 10p	470p -	2.7n 10p	470p -	1.5n* 10p	470p -	1.0n* 10p	470p -	680p* 10p	470p -	10p	470p -	10p	470p -	10p	470p -	T=4.0mm
33n 150n 39n 180n		00n 20n -	10n 12n	47n 56n	6.8n 8.2n	33n 	4.7n 5.6n	22n _	1.8n 2.2n	6.8n	1.5n 1.8n	5.6n	1.0n 1.2n	4.7n _	150p	1.5n* _	100p	1.0n* —	68p	820p* _	T=2.5mm
56n 470n 27p 1.0n		30n 0n	18n 27p	150n 1.0n	12n 27p	1.0n	8.2n 27p	1.0n	3.3n 27p	1.0n	2.2n 27p	1.0n	1.5n 27p	1.0n	27p	1.0n	27p	1.0n	27p	1.0n	T=4.0mm
68n 220n 82n	39n 15	50n	22n 27n	82n	12n 15n	68n	10n 12n	47n	4.7n 5.6n	15n	2.7n 3.3n	10n	1.8n 2.2n	8.2n	330p	4.7n*	180p	2.2n*	120p	1.2n*	T=2.5mm
100n 2.2n	68n 47p 2	 2.2n	39n 47p	2.2n	22n 47p	2.2n	18n 47p	2.2n	6.8n 47p	2.2n	4.7n 47p	2.2n	3.3n 47p	2.2n	 47р	2.2n	 47р	 2.2n	 47р	2.2n	T=4.0mm
100n 470n 120n	68n 33	- 30n	39n 47n	150n	22n 27n	100n	15n 18n	82n	8.2n 10n	33n	5.6n 6.8n	22n	3.9n 4.7n	15n	- 680p	6.8n*	470p	4.7n*	220p	2.2n*	T=2.5mm
1.2kV	120n	V	68n	·\/	39n 2.5	kV	27n 3k	·\/	15n 4k		10n 5k	·\/	6.8n		- 8k	·\/	10	L V	12	k\/	T=4.0mm

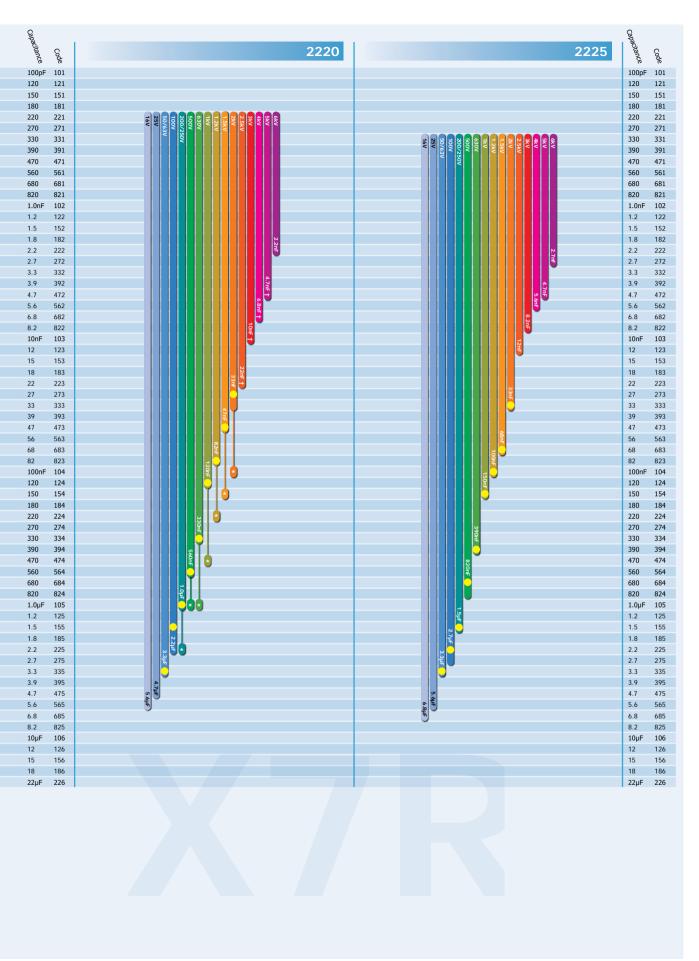

www.knowlescapacitors.com

Industry Standard - MLC chip range - X7R


For 0504, 0907, 1005, 2020, 2221, 4040, 5440 and 43100 range information please refer to your local Knowles Sales Office.

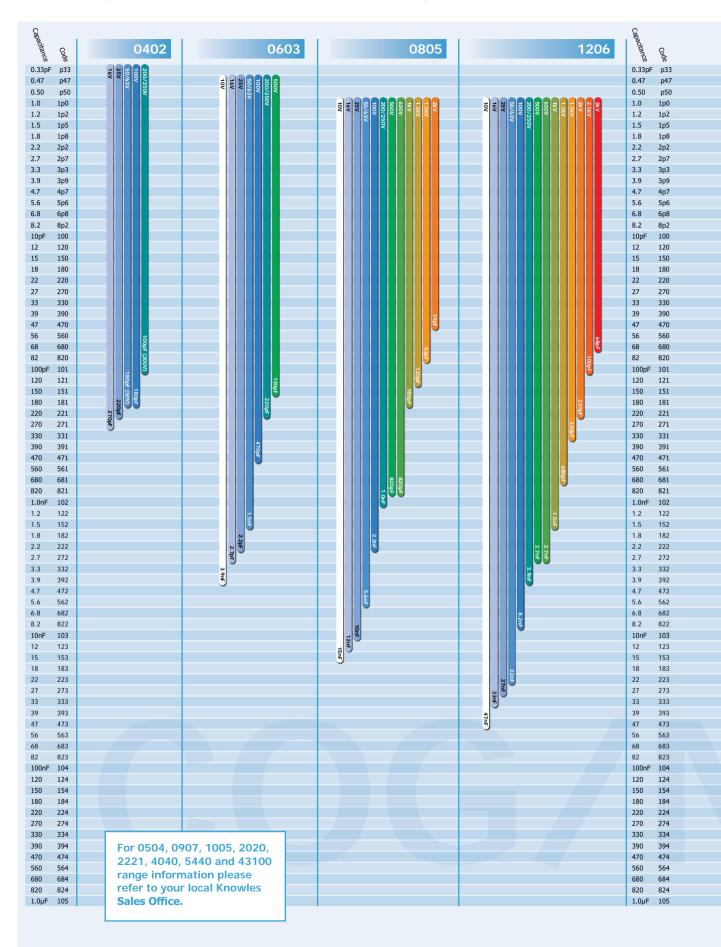
- * StackiCap™ high capacitance versions available from the StackiCap™ range see page 62 for details.
- † Higher capacitance values available from the NC capacitor range see page 63 for details.
- ** Max. capacitance of 27nF, has increased chip length of 3.5mm. Reduced max. cap value of 22nF, for standard dimension.
- = AEC-Q200 approved parts maximum values.
- △ For 0603 50/63V values from 68nF to 100nF should be ordered with FB6 suffix.

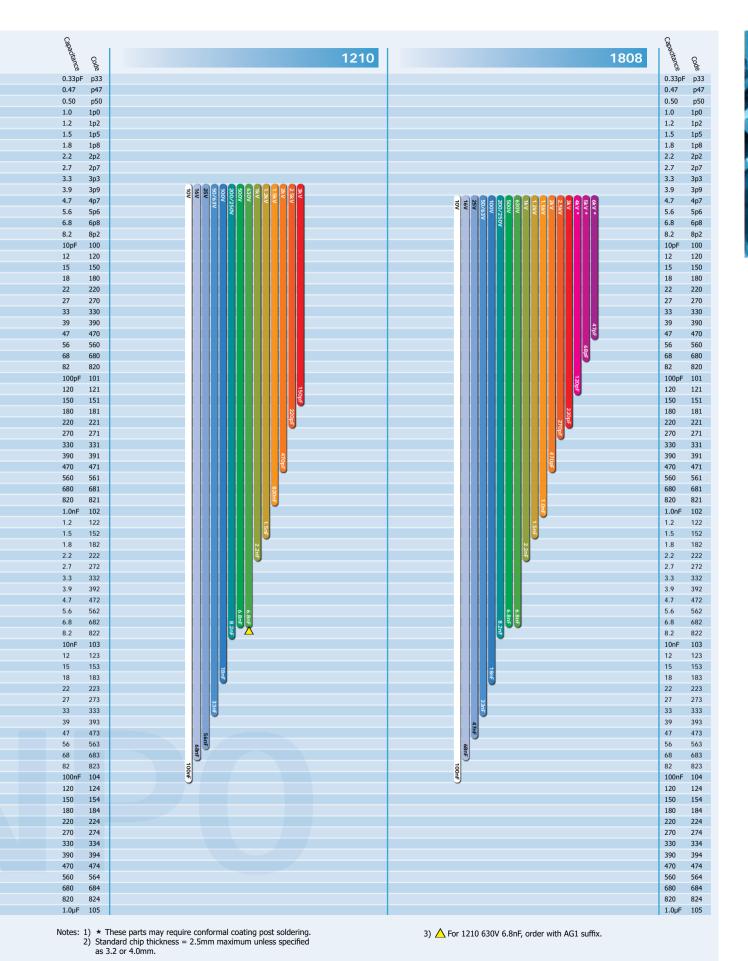
Industry Standard - MLC chip range - X7R

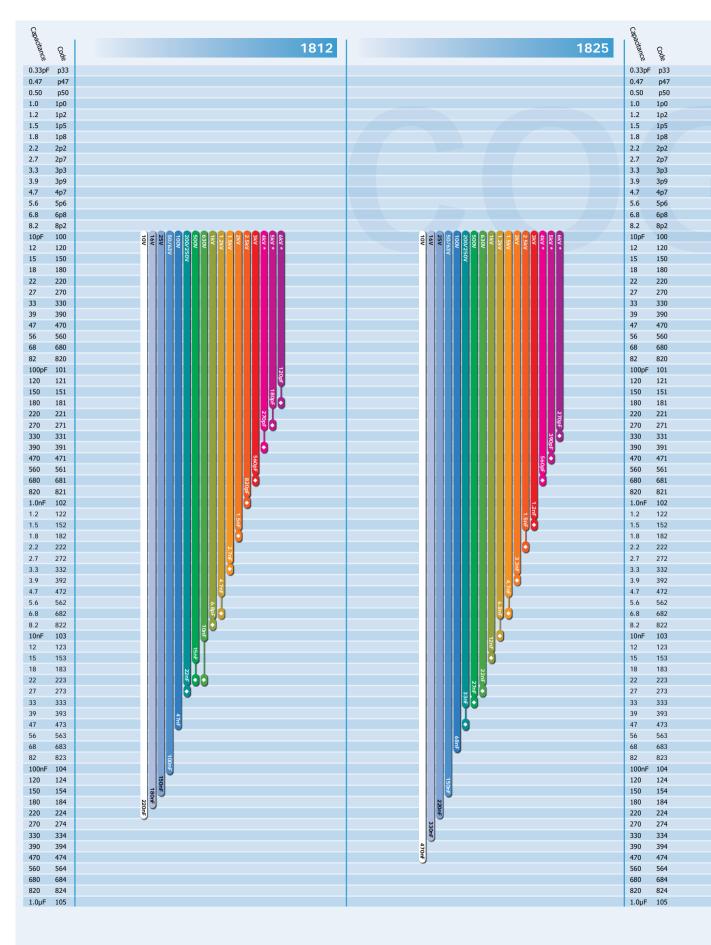


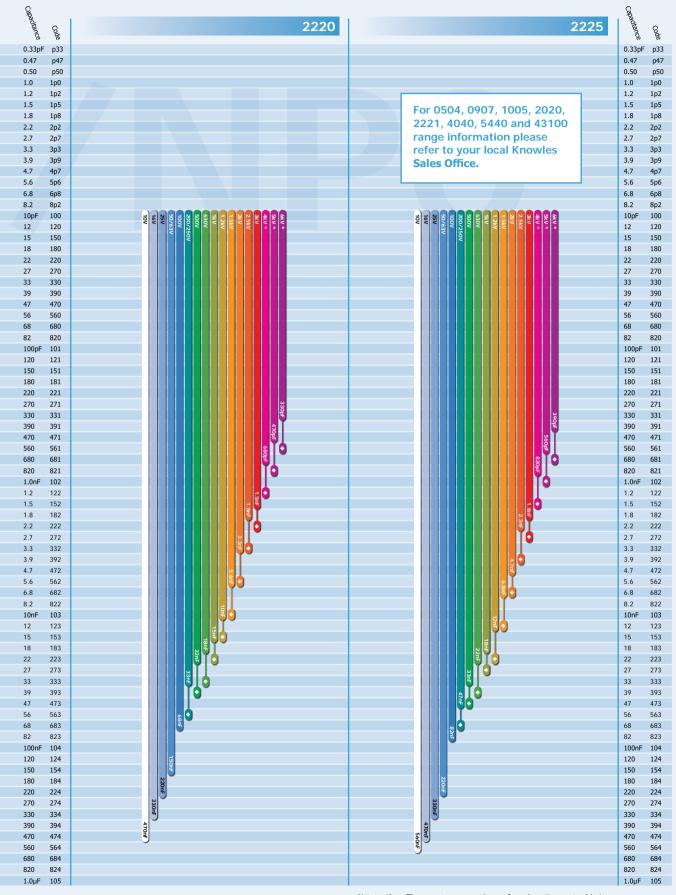
For 0504, 0907, 1005, 2020, 2221, 4040, 5440 and 43100 range information please refer to your local Knowles Sales Office.

^{*} StackiCap™ high capacitance versions available from the StackiCap™ range - see page 62 for details.

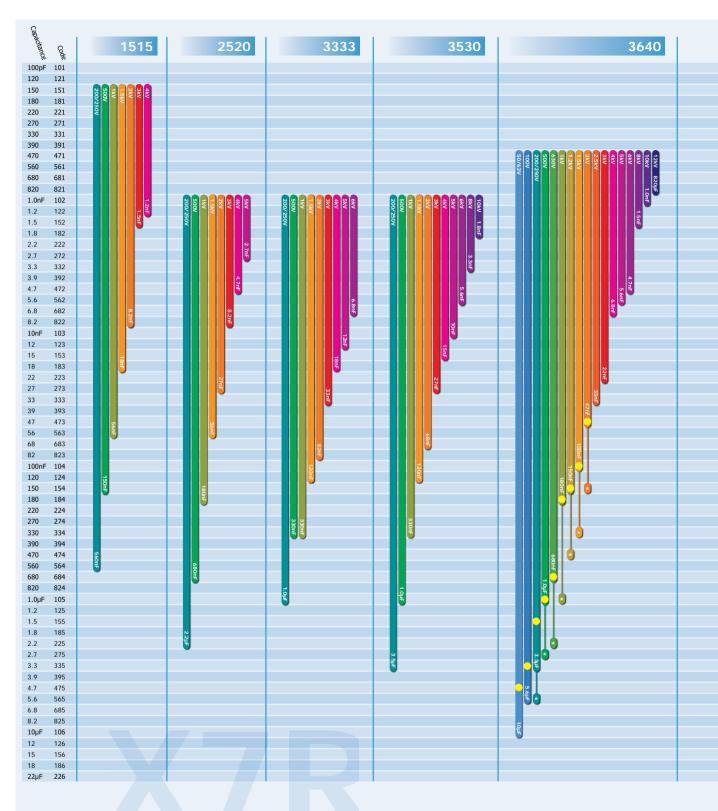

[†] Higher capacitance values available from the NC capacitor range - see page 63 for details.


⁼ AEC-Q200 approved parts - maximum values.

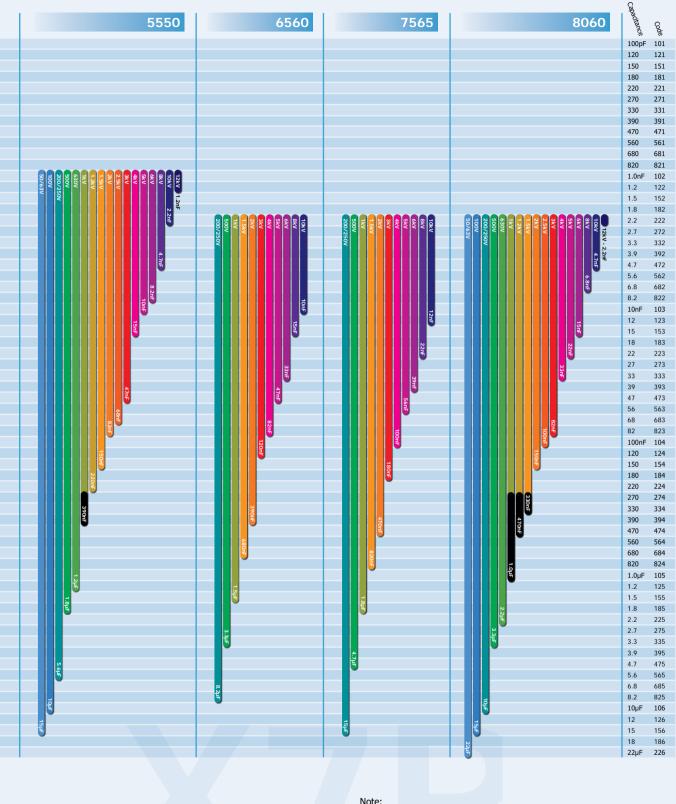



Industry Standard - MLC chip range - COG/NPO

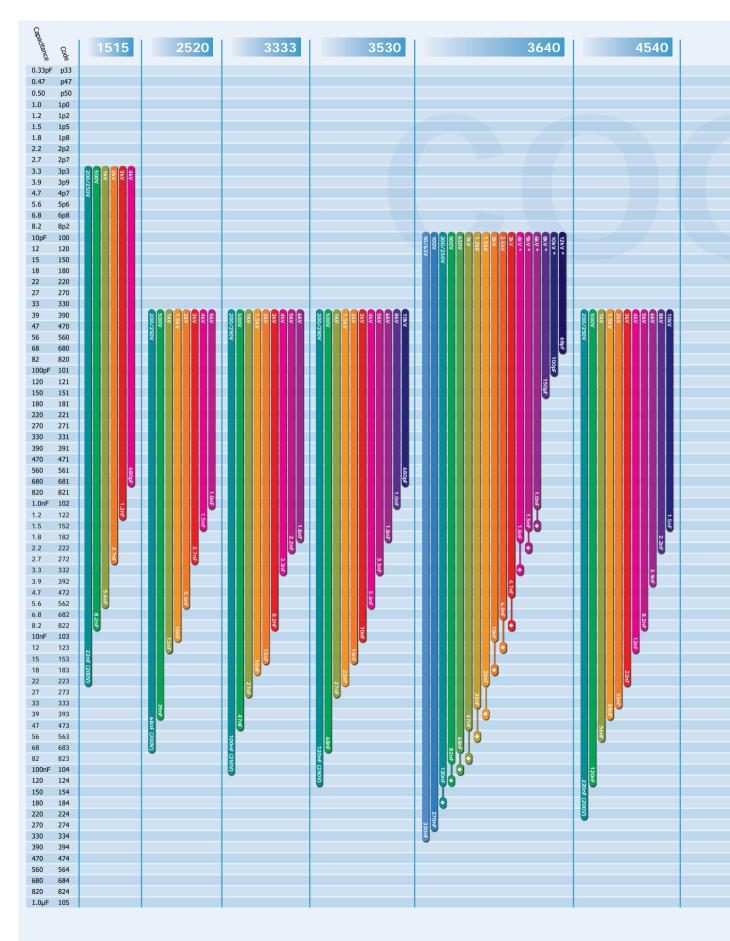
Industry Standard - MLC chip range - COG/NPO

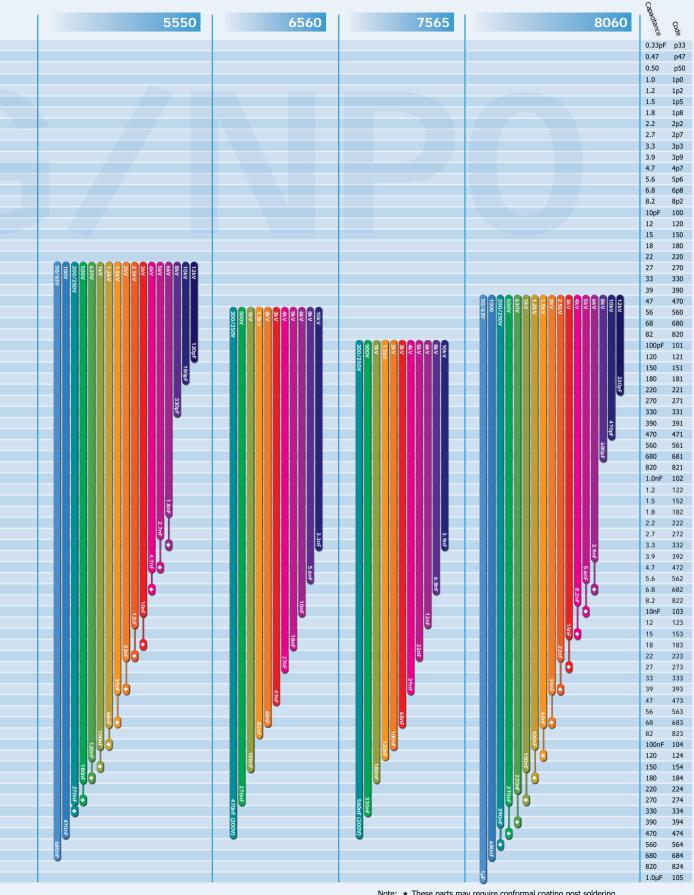


Notes: 1) ★ These parts may require conformal coating post soldering.
2) ◆ Standard chip thickness = 2.5mm maximum unless specified as 3.2 or 4.0mm.


Other Popular Sizes - MLC chip range - X7R

^{*} StackiCap $^{\text{TM}}$ high capacitance versions available from the StackiCap $^{\text{TM}}$ range - see page 62 for details.


⁼ AEC-Q200 approved parts - maximum values.



Note:

• The highlighted parts may be defined as dual-use under export control legislation as such may be subject to export licence restrictions. Please refer to page 12 for more information on the dual-use regulations and contact the Sales Office for further information on specific part numbers.

Other Popular Sizes - MLC chip range - COG/NPO

Note: * These parts may require conformal coating post soldering.

Standard Chip - BX

Manufactured with layer thickness, and minimal voltage coefficient, to meet BX requirements. BX characteristics are identical to X7R dielectric with the added restriction that the Temperature-Voltage Coefficient (TVC) does not exceed -25% at rated voltage, over -55°C to 125°C operating temperature.

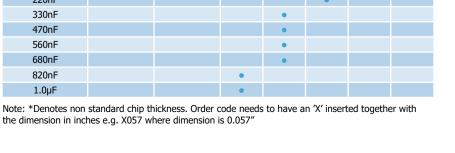
High Reliability Testing available: HB = MIL-PRF-55681 Group A. HK = MIL-PRF-38534 Class K. HS = MIL-PRF-123 Group A.

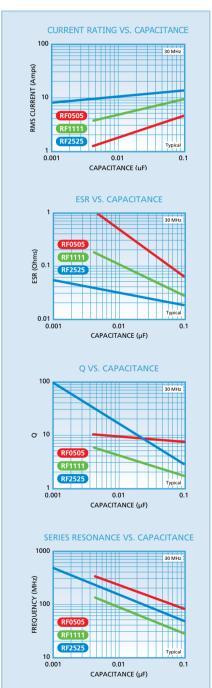
- For dimensions see page 20.
- For termination types see page 6.
- For ordering information see page 22.

Capacitance and Voltage Selection - BX

Size	0402	0504	0603	0805	1005	1206	1210	1808	1812	1825	2221	2225
Min cap.	120pF	150pF	150pF	470pF	470pF	470pF						
16V	5.6nF	39nF	27nF	100nF	120nF	270nF	470nF	560nF	1.0µF	1.8µF	1.5µF	2.2µF
25V	4.7nF	33nF	22nF	100nF	120nF	270nF	470nF	560nF	1.0μF	1.5μF	1.2µF	1.8µF
50V	1.8nF	18nF	12nF	47nF	68nF	120nF	270nF	270nF	560nF	1.2µF	1.2µF	1.5 µF
100V	680pF	6.8nF	4.7nF	18nF	18nF	47nF	100nF	100nF	180nF	390nF	330nF	470nF
200V	220pF	1.8nF	1.2nF	5.6nF	8.2nF	15nF	27nF	33nF	56nF	100nF	82nF	120nF
250V	-	680pF	390pF	1.8nF	2.7nF	4.7nF	10nF	10nF	22nF	56nF	47nF	68nF
300V	-		-	1.2nF	1.2nF	3.2nF	5.6nF	6.8nF	12nF	39nF	33nF	47nF
400V	-	-	-	680pF	680pF	1.8nF	3.3nF	3.9nF	5.6nF	18nF	18nF	22nF
500V	-	-	-	390pF	470pF	1.0nF	2.2nF	2.2nF	3.9nF	12nF	10nF	15nF

Improved ESR Capacitors - BX & X7R


A range of commercial MLC chip capacitors with improved ESR performance. This series has been designed for rugged environments in high power broadband coupling and switching power supplies. The Class II ceramic dielectric (BX or X7R dependant on chip size) affords high volumetric efficiency with negligible piezoelectric effects.


Please consult the Novacap Sales Office if your specific requirement exceeds our catalog maximums (size, capacitance value and voltage).

- For dimensions see page 20.
- Termination options: P = Palladium/Silver
 - **N** = Nickel barrier 100% Tin (RoHS)
 - Y = Nickel barrier 90% Tin/10% Lead
 - **B** = Copper barrier 100% Tin (RoHS) E = Copper barrier 90% Tin/10% Lead
- Capacitance tolerances available ± 10%, ±20%
- For ordering information see page 22.

Capacitance and Voltage Selection - BX & X7R - Improved ESR

Cinc. DECISE DESIGNATION OF THE PROPERTY OF TH										
Size	RF0505	RF1111			RF2525					
Tmax mm ~ inches:	0.057 ~ 1.45*	0.102 ~ 2.59*		0.	165 ~ 4.19	9*				
Dielectric	ВХ	ВХ			X7R					
Rated Voltage	50	50	100	150	200	250	300			
470pF	•									
560pF	•									
680pF	•									
820pF	•									
1.0nF	•									
1.2nF	•									
1.5nF	•									
1.8nF	•									
2.2nF	•									
2.7nF	•									
3.3nF	•									
3.9nF	•									
4.7nF	•	•								
5.0nF	•	•								
5.6nF	•	•								
6.8nF	•	•								
8.2nF	•	•								
10nF	•	•					•			
12nF		•					•			
15nF		•					•			
18nF		•					•			
22nF		•					•			
27nF		•								
33nF		•				•				
39nF		•				•				
47nF		•				•				
50nF		•								
56nF		•								
68nF		•				•				
82nF		•			•					
100nF		•			•					
120nF					•					
150nF					•					
220nF					•					
330nF				•						
470nF				•						
560nF				•						
680nF				•						
820nF			•							
1.0µF			•							

the dimension in inches e.g. X057 where dimension is 0.057"

High Q Capacitors - Q(MS) & U ranges

The "Q(MS)" and "U" ranges offers a very stable High Q material system that provides excellent, low loss, performance in systems below 3GHz. Optimised for lowest possible ESR, this range of high frequency capacitors is suitable for many applications where economical, high performance is required.

Available in 0402 to 3640 case sizes (0603 & 0805 case sizes only available in the "U" range) with various termination options including FlexiCap $^{\text{TM}}$.

CapCad[™] capacitor modelling software is now available and has been developed with an easy to use and readily accessible comparison tool for choosing the best MLCC to suit the customer's needs. Please consult the Knowles website to launch the software.

Operating Temperature

-55°C to +125°C

Temperature Coefficient (Typical)

 $0 \pm 30 \text{ ppm/°C (C0G/NP0)}$

Insulation resistance

MS range: $>100G\Omega$ at $+25^{\circ}$ C; $>10G\Omega +125^{\circ}$ C U range: $100G\Omega$ or 1000s (whichever is the least)

Q Factor >2000 @ 1MHz

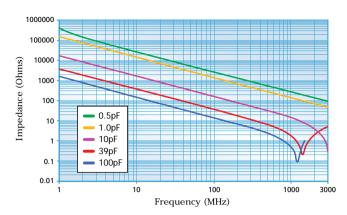
0603 S-parameter downloads are available from:

http://www.knowlescapacitors.com/syfer/en/products/mlc-capacitors/ultra-low-esr-capacitors and the Syfer MVP page on the Modelithics website. Please visit the Syfer MVP page for more information at: http://www.modelithics.com/mvp/syfer

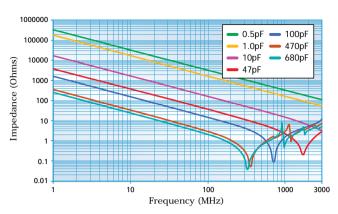
Minimum/maximum capacitance values - Q(MS) & U ranges - High Q capacitors

Chip Size	0402*	0603†	0505	0805†	1206	1111	1210	1812	2220	2225	4040
Min Cap	0.1pF	0.1pF	0.2pF	0.2pF	0.5pF	0.3pF	0.3pF	1.0pF	2.0pF	-	-
50V _{63V}	33pF	-	330pF	-	2.2nF	-	-	-	-	-	-
100V	22pF	-	220pF	-	1.5nF	3.3nF	3.3nF	6.8nF	15nF	-	-
150V	22pF	-	180pF	-	1.2nF	2.7nF	2.7nF	4.7nF	12nF	-	-
200V _{250V}	22pF	100pF	150pF	240pF	1.0nF	2.2nF	2.2nF	3.9nF	10nF	6.2 - 10nF	16 - 27nF
300V	-	-	100pF	-	680pF	1.5nF	1.5nF	3.3nF	6.8nF	-	-
500V	-	-	-	-	330pF	820pF	820pF	2.2nF	4.7nF	5.1 - 5.6nF	13 - 15nF
630V	-	-	-	-	150pF	390pF	390pF	1.0nF	2.2nF	3.6 - 4.7nF	11 - 12nF
1000V		w 1pF capacita		-	82pF	220pF	220pF	680pF	1.5nF	1.1 - 3.3nF	5.6 - 10nF
2000V		available in 0.1		-	18pF	68pF	68pF	150pF	470pF	510pF - 1.0nF	1.6 - 5.1nF
3000V		ilable in E24 ser		-	-	-	-	68pF	150pF	1.0 - 470pF	910pF - 1.5nF
4000V	-	-	-	-	-	-	-	-	-	-	620 - 820pF
5000V	-	-	-	-	-	-	-	-	-	-	360 - 560pF
6000V	-	-	-	-	-	-	-	-	-	-	160 - 330pF
7000/7200V	-	-	-	-	-	-	-	-	-	-	1.0 - 150pF
Tape				7" reel 3000	7" reel 2500	7" reel 1000	7" reel 2000	7" reel 500 13" reel	7" reel 500 13" reel	7" reel 500 13" reel	13" reel
quantities			13" reel qua	intities available	e on request			2000	2000	2000	Oilly

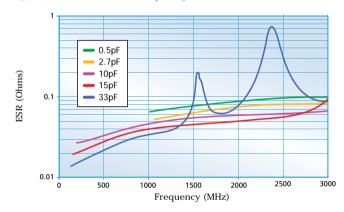
*0402 size and other values (inc. values < than 0.3pF) and taping quantities may be available on request, consult the Sales Office. †0603 and 0805 sizes only available in the "U" range and not Q(MS)

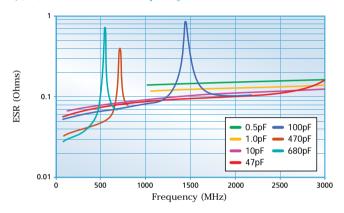


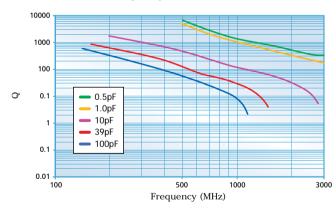
Dimensions

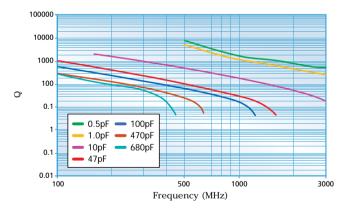

Range	Case Size	Length (L1) mm ~ inches	Width (W) mm ~ inches	Max. Thickness (T) mm ~ inches	Termination Band (L2) mm ~ inches		
		10.10.10	0.50 + 0.40 - 0.02 + 0.002	0.60 0.004	Min	Max	
MS	0402	$1.0 \pm 0.10 \sim 0.04 \pm 0.006$	$0.50 \pm 0.10 \sim 0.02 \pm 0.003$	0.60 ~ 0.031	0.10 ~ 0.004	0.40 ~ 0.015	
U	0603	$1.6 \pm 0.2 \sim 0.063 \pm 0.008$	$0.8 \pm 0.2 \sim 0.032 \pm 0.008$	0.80 ~ 0.032	0.10 ~ 0.004	0.40 ~ 0.016	
MS	0505	1.4 +0.35 -0.25 ~ 0.055 +0.014 -0.01	1.4 ± 0.25 ~ 0.055 ± 0.01	1.27 ~ 0.05	0.13 ~ 0.005	0.5 ~ 0.02	
U	0805	$2.0 \pm 0.3 \sim 0.079 \pm 0.012$	$1.25 \pm 0.20 \sim 0.049 \pm 0.008$	1.3 ~ 0.051	0.13 ~ 0.005	0.75 ~ 0.03	
MS	1206	$3.2 \pm 0.3 \sim 0.126 \pm 0.012$	$1.6 \pm 0.20 \sim 0.063 \pm 0.008$	1.6 ~ 0.063	0.25 ~ 0.01	0.75 ~ 0.03	
MS	1111	2.79 +0.51 -0.25 ~ 0.11 +0.02 -0.01	$2.79 \pm 0.38 \sim 0.113 \pm 0.015$	1.78 ~ 0.07	0.13 ~ 0.005	0.63 ~ 0.025	
MS	1210	$3.2 \pm 0.3 \sim 0.126 \pm 0.012$	$2.5 \pm 0.3 \sim 0.10 \pm 0.012$	2.0 ~ 0.08	0.25 ~ 0.01	0.75 ~ 0.03	
MS	1812	$4.5 \pm 0.35 \sim 0.18 \pm 0.014$	$3.2 \pm 0.3 \sim 0.126 \pm 0.012$	2.5 ~ 0.10	0.25 ~ 0.01	1.0 ~ 0.04	
MS	2220	$5.7 \pm 0.40 \sim 0.225 \pm 0.016$	$5.0 \pm 0.40 \sim 0.197 \pm 0.016$	4.2 ~ 0.16	0.25 ~ 0.01	1.0 ~ 0.04	
MS	2225	$5.7 \pm 0.40 \sim 0.225 \pm 0.016$	$6.30 \pm 0.40 \sim 0.252 \pm 0.016$	4.2 ~ 0.165	0.381 ~ 0.01	1.143 ~ 0.045	
MS	4040	$10.2 \pm 0.508 \sim 0.400 \pm 0.020$	$10.2 \pm 0.508 \sim 0.400 \pm 0.020$	7.62 ~ 0.30	0.50 ~ 0.02	1.50 ~ 0.06	

High Q Capacitors - Q(MS) & U ranges

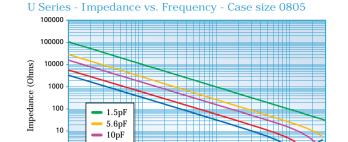

Q(MS) Series - Impedance vs. Frequency - Case size 0505

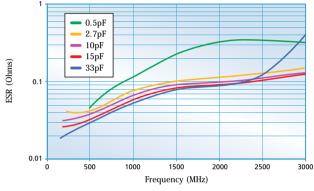

Q(MS) Series - Impedance vs. Frequency - Case size 1111


Q(MS) Series - ESR vs. Frequency - Case size 0505


Q(MS) Series - ESR vs. Frequency - Case size 1111

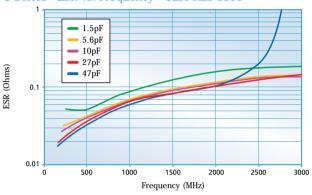
Q(MS) Series Q vs. Frequency - Case size 0505


Q(MS) Series Q vs. Frequency - Case size 1111


All performance curves are based on measurements taken with Boonton 34A resonant tube, Agilent E4991A impedance analyser and Agilent 16197A test fixture. Different test methods or fixtures may give different results. Data is typical and is supplied for indication only.

High Q Capacitors - Q(MS) & U ranges

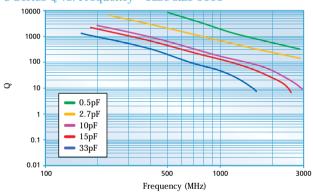
U Series - Impedance vs. Frequency - Case size 0603 1000000 100000 10000 (Ohms) 1000 100 0.5pF 10 2.7pF ■ 10pF 15pF 0.1 - 33pF 0.01 3000 Frequency (MHz)

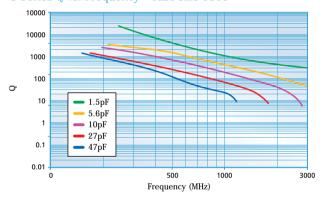


U Series - ESR vs. Frequency - Case size 0805

- 27pF

- 47pF


0.1


Frequency (MHz)

3000

U Series Q vs. Frequency - Case size 0603

U Series Q vs. Frequency - Case size 0805

Note: All performance curves are based on measurements taken with Boonton 34A resonant tube, Agilent E4991A impedance analyser and Agilent 16197A test fixture. Different test methods or fixtures may give different results. Data is typical and is supplied for indication only.

 \star 0402 size and other values (inc. values < than 0.3pF) and taping quantities may be available on request, consult the Sales Office.

10603 and 0805 sizes only available in the "U" range and not Q(MS).

Ordering information - High Q capacitors - MS(Q) and U ranges

0805	J	250	4P70	В	U	T
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric	Packaging
0402* 0603† 0505 0805† 1206 1111 1210 1812 2220 2225 3640	J = Nickel barrier (100% matte tin plating). RoHS compliant. Lead free. A = Nickel barrier (Tin/lead plating with min. 10% lead). Not RoHS compliant.	050 = 50V 063 = 63V 100 = 100V 150 = 150V 200 = 200V 250 = 250V 300 = 300V 500 = 500V 630 = 630V 1KO = 1kV 2KO = 2kV 3KO = 3kV	<1.0pF: Insert a P for the decimal point as the first character. eg. P300 = 0.3pF Values in 0.1pF steps ≥1.0pF & <10pF: Insert a P for the decimal point as the second character. eg. 8P20 = 8.2pF Values are E24 series ≥10pF: First digit is 0. Second and third digits are significant figures of capacitance code. Fourth digit is number of zeros. eg. 0101 = 100pF Values are E24 series	$<4.7pF \\ H = \pm 0.05pF \\ B = \pm 0.1pF \\ C = \pm 0.25pF \\ D = \pm 0.5pF \\ <10pF \\ B = \pm 0.1pF \\ C = \pm 0.25pF \\ D = \pm 0.5pF \\ >10pF \\ F = \pm 1\% \\ G = \pm 2\% \\ J = \pm 5\% \\ K = \pm 10\% \\$	Q = High Q version of COG/NP0 U = High Q version of COG/NP0	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays

High Q Capacitors, High Temperature - H range

The Ultra-low ESR "H" range offers a very stable, X8G High Q material system that provides excellent low loss performance. Optimised for lowest possible ESR, the electrode system provides low metal losses resulting in flatter performance curves and reduced losses at higher frequencies.

An extended operating temperature range of -55°C to +150°C accommodates modern high density micro electronics requirements.

This range of high frequency capacitors is suitable for many applications where economical, high performance is required.

Operating Temperature

-55°C to +150°C (EIA X8G)

Temperature Coefficient (Typical)

 $0 \pm 30 \text{ ppm/}^{\circ}\text{C} \text{ (EIA X8G)}$

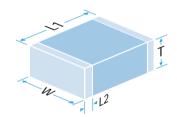
Insulation resistance

Time constant (Ri xCr) (whichever is the least)

 $100 \mbox{G}\Omega$ or $1000 \mbox{s}$

Q Factor

>2000 @ 1MHz



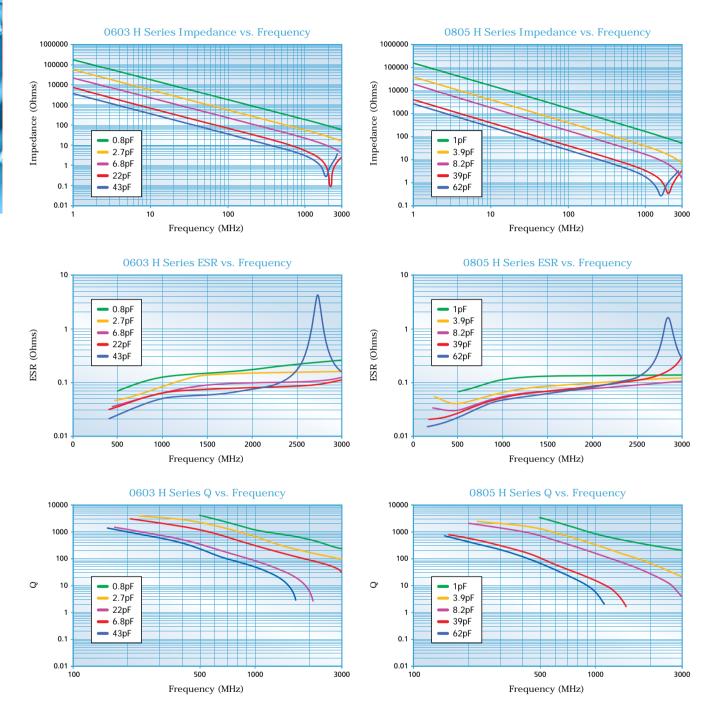
Minimum/maximum capacitance values - Ultra-low ESR capacitors - H range

Chip	Size	0402	0603	0805
Min	Сар	0.1pF	0.1pF	0.2pF
Max Cap	250V	22pF	100pF	240pF
Tono au	omtition.	7" reel - 10,000	7" reel - 4,000	7" reel - 3,000
rape qu	antities	13" reel - 15,000	13" reel - 16,000	13" reel - 12,000

Note: Below 1pF capacitance values are available in 0.1pF steps. Above 1pF capacitance values are available in E24 series values.

Dimensions

Size	Length (L1) mm ~ inches	Width (W) mm ~ inches	Max. Thickness (T) mm ~ inches	Termination Band (L2) mm ~ inches		
				min	max	
0402	$1.0 \pm 0.10 \sim 0.04 \pm 0.004$	$0.5 \pm 0.1 \sim 0.02 \pm 0.004$	0.60 ~ 0.24	0.10 ~ 0.004	0.40 ~ 0.016	
0603	$1.6 \pm 0.2 \sim 0.063 \pm 0.008$	$0.8 \pm 0.2 \sim 0.032 \pm 0.008$	0.80 ~ 0.032	0.10 ~ 0.004	0.40 ~ 0.016	
0805	$2.0 \pm 0.3 \sim 0.079 \pm 0.012$	$1.25 \pm 0.20 \sim 0.049 \pm 0.008$	1.3 ~ 0.051	0.13 ~ 0.005	0.75 ~ 0.03	


Ordering information - Ultra-low ESR capacitors - H range

0805	J	250	0101	J	Н	Т
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric	Packaging
0402 0603 0805	J = Nickel barrier (100% matte tin plating). RoHS compliant. Lead free.	250 = 250V	<1.0pF: Insert a P for the decimal point as the first character. eg. P300 = 0.3pF Values in 0.1pF steps ≥1.0pF & <10pF: Insert a P for the decimal point as the second character. eg. 8P20 = 8.2pF Values are E24 series ≥10pF: First digit is 0. Second and third digits are significant figures of capacitance code. Fourth digit is number of zeros. eg. 0101 = 100pF Values are E24 series	$<4.7pF \\ H = \pm 0.05pF \\ B = \pm 0.1pF \\ C = \pm 0.25pF \\ D = \pm 0.5pF \\ <10pF \\ B = \pm 0.1pF \\ C = \pm 0.25pF \\ D = \pm 0.5pF \\ \geqslant 10pF \\ F = \pm 1\% \\ G = \pm 2\% \\ J = \pm 5\% \\ K = \pm 10\% $	H = Ultra- low ESR High Frequency "H" range	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays

High Q Capacitors, High Temperature - H range

Typical performance - 0805 chip size

High Q Capacitors, High Power RF - Surface Mount & Ribbon Leaded

A range of ultra-low loss High Q ceramic capacitors with COG/NPO characteristics suitable for high power applications where minimal power loss and very low self heating is demanded.

Capacitance values

1pF to 27nF (High Q)

Chip sizes

2225 and 4040

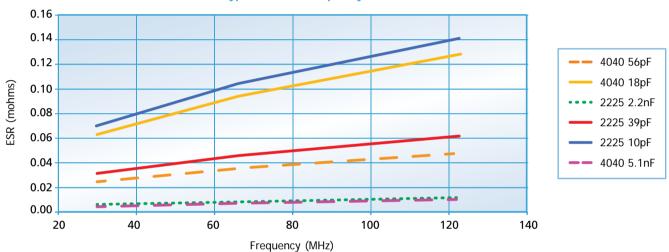
Operating temperature

-55°C to +125°C

High Q low ESR dielectrics

(other options available)

Insulation Resistance (IR)


 $100 \text{G}\Omega$ min @ 100 Vdc or 1000s (whichever is the less)

DWV up to 8400Vdc

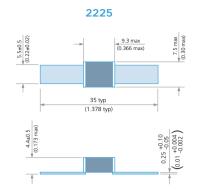
ESR Measurement

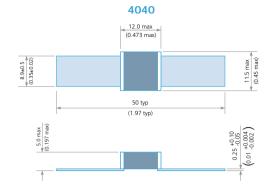
All ESR figures are measured using a VNA and 2m copper resonant tube and extrapolating to 30MHz by ratio. Measured data can be supplied on request. Measurement of ESR can vary with test method and components should only be compared when tested back-to-back on the same equipment under controlled conditions.

High Power RF capacitors - minimum/maximum capacitance values

Chip size	Case size	25 - 2225	Case size	40 - 4040
5111p 5125	Min.	Max.	Min.	Max.
200V	6.2nF	10nF	16nF	27nF
500V	5.1nF	5.6nF	13nF	15nF
630V	3.6nF	4.7nF	11nF	12nF
1kV	1.1nF	3.3nF	5.6nF	10nF
2kV	510pF	1.0nF	1.6nF	5.1nF
3kV	110pF	470pF	910pF	1.5nF
3.6kV	1pF	47pF*/100pF	-	-
4kV	-	-	620pF	820pF
5kV	-	-	360pF	560pF
6kV	-	-	160pF	330pF
7.0kV/7.2kV	-	-	1pF	56pF** / 150pF

Note: *2225 - 47pF max. for dual rated @2.5kVac 30MHz **4040 - 56pF max. for dual rated @5kVac 30MHz.


High Q Capacitors, High Power RF - Surface Mount & Ribbon Leaded


Surface Mount

12

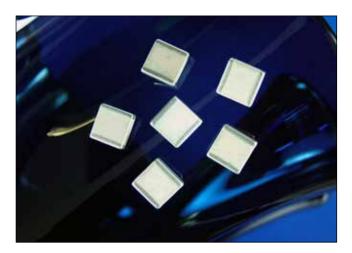
Plating finish: Tin over Ni.

Ribbon Leaded Silver plated copper ribbon attached with HMP solder - (MP greater than 260°C)

Range dimensions - Surface Mount High Power RF capacitors

Chip size	Length (L1) mm/inches	Width (W) mm/inches	Max. Thickness (T) mm/inches	Terminat L mm/i	ion Band 2 nches
				min	max
2225	5.7 ± 0.04 0.225 ± 0.016	6.3 ± 0.4 0.25 ± 0.016	4.2 0.16	0.25 0.01	1.0 0.04
4040	10.2 ± 0.5 0.402 ± 0.020	10.2 ± 0.5 0.402 ± 0.020	4.2 0.16	0.5 0.02	1.5 0.06

Ordering information - Surface Mount High Power RF capacitors


4040	J	7 K0	0470	J	Q	В	AF7
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric	Packing	Varient Code
2225 4040	J = Nickel barrier (100% matte tin plating). RoHS compliant. Lead free.	200 = 200V 500 = 500V 630 = 630V 1KO = 1kV 2KO = 2kV 3KO = 3kV 3K6 = 3.6kV 4KO = 4kV 5KO = 5kV 6KO = 6kV 7KO = 7kV/ 7.2kV	<10pF Insert a P for the decimal point, eg 2P20 = 2.2pF. >10pF. 1st digit is 0. 2nd and 3rd digits are significant figures of capacitance code. The 4th digit is number of 0's following eg. 0470 = 47pF 0512 = 5100pF	<10pF $B = \pm 0.10pF$ $C = \pm 0.25pF$ $D = \pm 0.50pF$ $\geqslant 10pF$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	Q = High Q version of COG/NPO	B = Bulk packed	AF7 = Standard Variant for High Power applications

Ordering information - Ribbon Leaded High Power RF capacitors

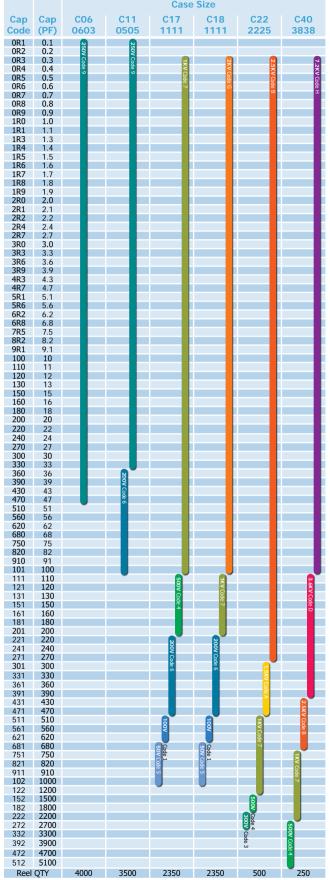
				•				
4040	В	7KO	0470	G	Q	В	Lead options	Variant code
Chip size	Coating	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric	Packing	R	W001
2225 4040	B = Uncoated V = Coated with modified silicone lacquer	200 = 200V 500 = 500V 630 = 630V 1K0 = 1kV 2K0 = 2kV 3K0 = 3kV 3K6 = 3.6kV 4K0 = 4kV 5K0 = 5kV 6K0 = 6kV 7K0 = 7kV/ 7.2kV	<10pF Insert a P for the decimal point, eg 2P20 = 2.2pF. >10pF. 1st digit is 0. 2nd and 3rd digits are significant figures of capacitance code. The 4th digit is number of 0's following eg. 0470 = 47pF 0512 = 5100pF	<10pF $B = \pm 0.10pF$ $C = \pm 0.25pF$ $D = \pm 0.50pF$ $\geqslant 10pF$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	Q = High Q version of COG/NPO	B = Bulk packed	R = Ribbon Leaded	W001 = Standard Variant W**1 = Marked

Note: For non-magnetic see page 69.

High Q Porcelain Capacitors - CF Series

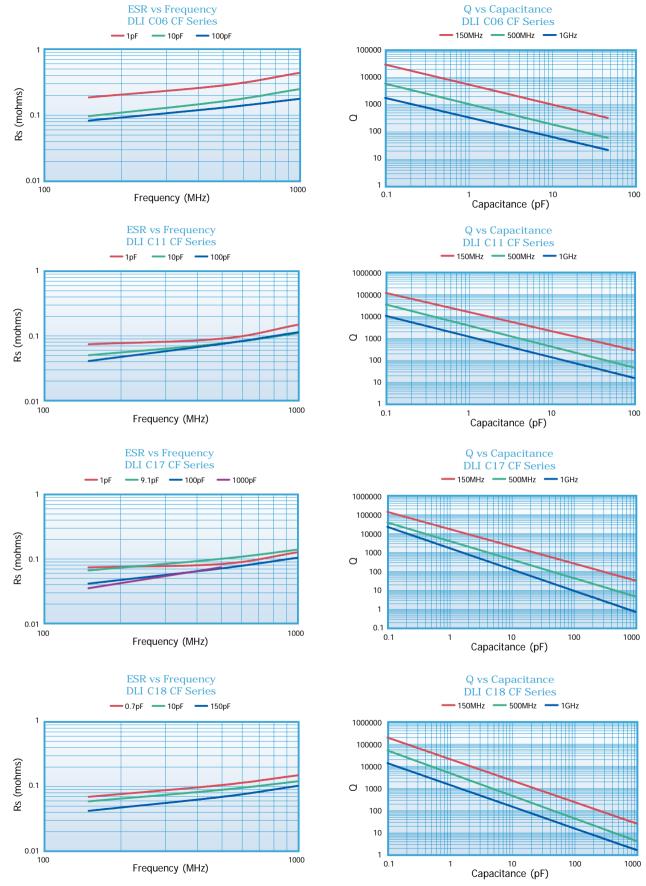
Description

- High Q Porcelain Capacitors
 SMD Compatibility
- Ultra Temperature Stable Low ESR, High Q
- Capacitance range 0.1 5100 pF
- Operating Range -55° to +125°C High Voltage
- High Self-resonance Low Noise Established Reliability

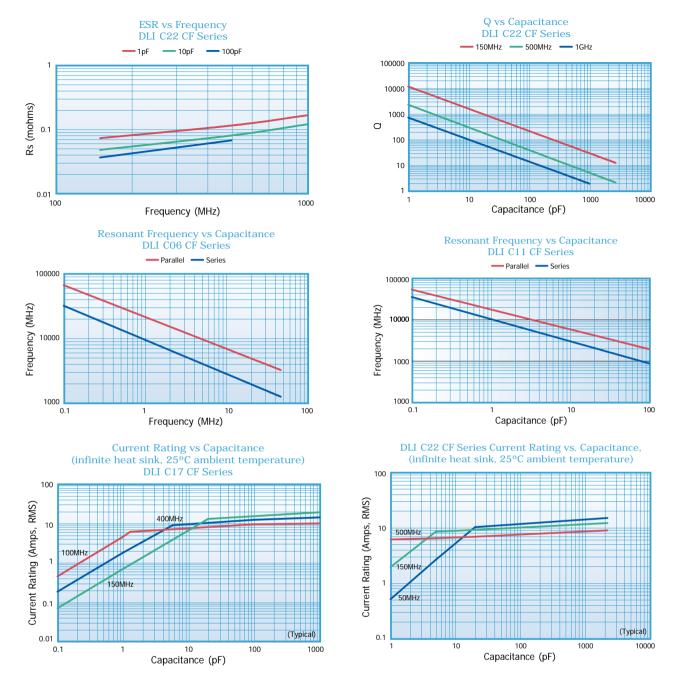

Functional Applications

- Impedance Matching Power Handling DC Blocking
- Bypass Coupling Tuning and Feedback
- Amplifier Matching Networks VCO Frequency Stabilization
- Filtering, Diplexers and Antenna Matching
- High RF Power Circuits Oscillators Timing Circuits
- Filters RF Power Amplifiers and Delay Lines

Dielectric characteristics


Dielectric Material (Co	de)	COG/NPO (CF)				
Temperature Coefficien	Temperature Coefficient (ppm/°C)					
Dissipation Factor (%	0.05					
Dielectric	Voltage Rating (Volts)	Refer to table				
Withstanding Voltage	DWV (Volts)	250% of rated				
Insulation Resistance	@ +25°C	10 ⁶ MΩ min				
(MΩ Minimum)	@ +125°C	10⁵ MΩ min				
Ageing		None				
Piezoelectric Effects		None				
Dielectric Absorption		None				

Capacitance and Voltage Table


Special capacitance values available upon request.

High Q Porcelain Capacitors - CF Series

Note: This information represents typical device performance.

High Q Porcelain Capacitors - CF Series

Note: This information represents typical device performance.

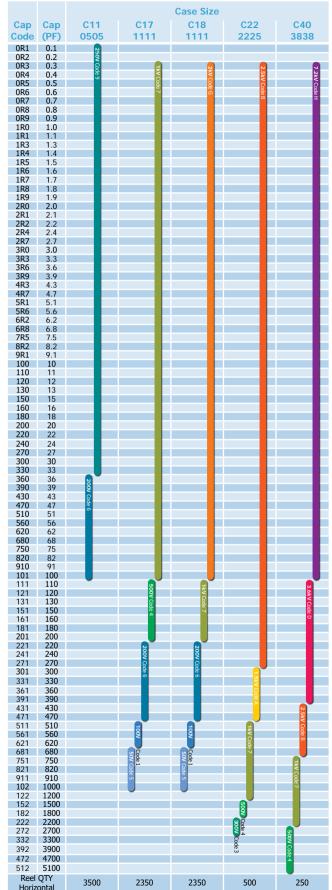
Ordering information - CF Series - See Page 21 for complete part number system.

C17	CF	620	J.	7	U	N ·	- X	0	T
Chip size	Dielectric	Capacitance Code (pF)	Capacitance tolerance	Voltage Code	Termination	Lead Type	Test Level	Marking	Packaging
C06 C11 C17 C18 C22 C40	CF = COG/NPO High Q	1st two digits are significant figures of capacitance, 3rd digit denotes number of zeros, R = decimal point. Examples: 1R0 = 1.0pF 471 = 471pF	<10pF $A = \pm 0.05pF$ $B = \pm 0.1pF$ $C = \pm 0.25pF$ $D = \pm 0.5pF$ $\geq 10pF$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ X = GMV S = Special	5 = 50V 1 = 100V 6 = 200V 9 = 250V 4 = 500V 7 = 1kV A = 1.5kV G = 2kV B = 2.5kV D = 3.6kV H = 7.2kV	C06 U, S, Z, E, P, Q, Y, W, H, V, R C11/17 T, U, S, Z, E, P, Q, Y, W, H, V, R C18 U, Q, Y, V, W, H, Z C22 U, S, Z, E, P, Q, Y, W, H, V, R C40 T, U, S, P, Q, Y, W, H, V, R	A = Axial ribbon B = Radial ribbon C = Center ribbon D = Special E = Axial wire F = Radial wire N = Chip Note: C06 only available as N (Chip)	X = Standard Y = Reduced Visual A = MIL- PRF-55681 Group A C = MIL- PRF-55681 Group C D = Customer Specified	C06 0, 1, 2, 5 C11 0 C17 0, 1, 2, 5 C18/22/40 0, 1	C06 T, W, B, S C11/17/18 T, V, W, B, P, S C22 T, B, P, S C40 T, B, P, S, R

High Q Porcelain Capacitors - AH Series

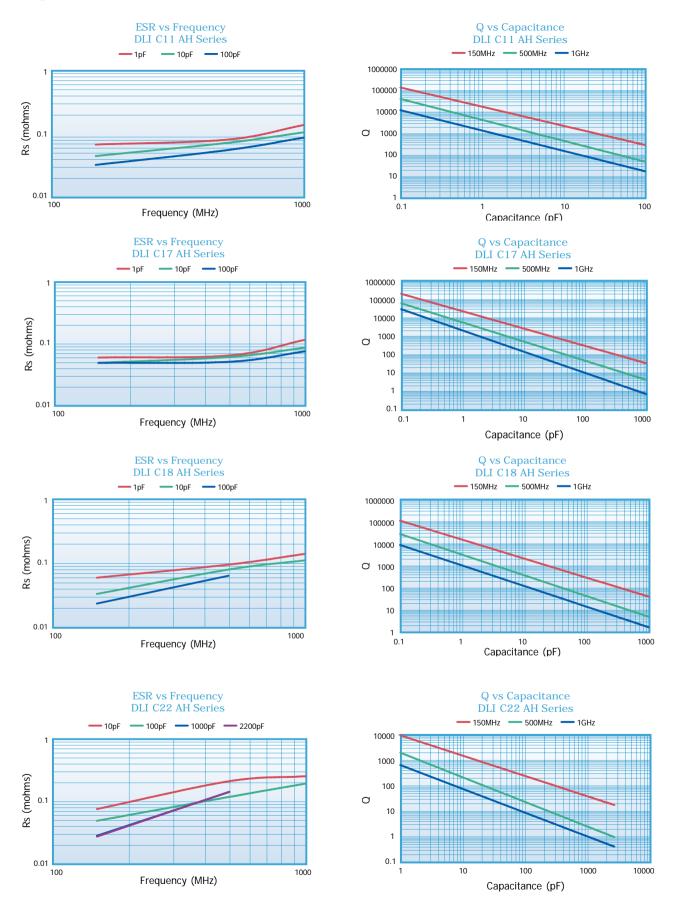
Description

- High Q Porcelain Capacitors SMD Compatibility
- Positive TC "P90" Low ESR, High Q
- Capacitance range 0.1 5100 pF
- Operating Range -55° to +125°C High Voltage
- High Self-resonance Low Noise Established Reliability


Functional Applications

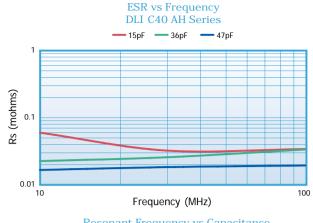
- Impedance Matching Power Handling DC Blocking
- Bypass Coupling Tuning and Feedback
- Amplifier Matching Networks VCO Frequency Stabilization
- Filtering, Diplexers and Antenna Matching
- High RF Power Circuits Oscillators Timing Circuits
- Filters RF Power Amplifiers and Delay Lines

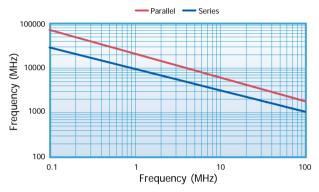
Dielectric characteristics


Dielectric Material (Coo	de)	P90 (AH)
Temperature Coefficier	nt (ppm/°C)	+90 ± 20
Dissipation Factor (%	0.05	
Dielectric	Voltage Rating (Volts)	Refer to table
Withstanding Voltage	DWV (Volts)	250% of rated
Insulation Resistance	@ +25°C	10 ⁶ MΩ min
(MΩ Minimum)	@ +125°C	10 ⁵ MΩ min
Ageing		None
Piezoelectric Effects		None
Dielectric Absorption		None

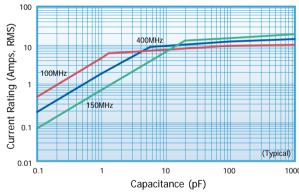
Capacitance and Voltage Table

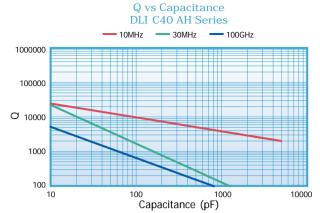
Special capacitance values available upon request.

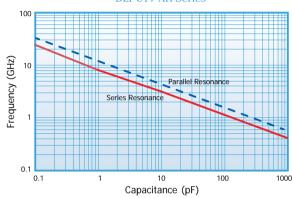

High Q Porcelain Capacitors - AH Series


Note: This information represents typical device performance.

High Q Porcelain Capacitors - AH Series





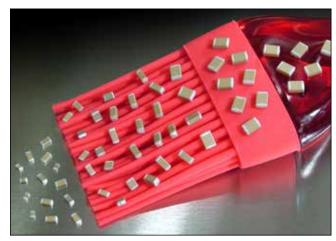


Current Rating vs Capacitance (infinite heat sink, 25°C ambient temperature) DLI C17 AH Series

First Resonance Frequency vs Capacitance DLI C17 AH Series

Note: This information represents typical device performance.

Ordering information - AH Series - See Page 21 for complete part number system.


C17	AH	620	J.	7	U	Α .	X	0	Т
Chip size	Dielectric	Capacitance Code (pF)	Capacitance tolerance	Voltage Code	Termination	Lead Type	Test Level	Marking	Packaging
C11 C17 C18 C22 C40	AH = P90 High Q	1st two digits are significant figures of capacitance, 3rd digit denotes number of zeros, R = decimal point. Examples: 1R0 = 1.0pF 471 = 471pF	$<10pF$ $A = \pm 0.05pF$ $B = \pm 0.1pF$ $C = \pm 0.25pF$ $D = \pm 0.5pF$ $\geq 10pF$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ $X = GMV$ $S = Special$	5 = 50V 1 = 100V 6 = 200V 9 = 250V 4 = 500V 7 = 1kV A = 1.5kV G = 2kV B = 2.5kV D = 3.6kV H = 7.2kV	C11/17 T, U, S, Z, E, P, Q, Y, M, W, H, V, R C18 U, Z, E, Y, W, H C22 U, S, Z, E, P, Q, Y, M, W, H, V, R C40 T, U, S, Z, E, P, Q, Y, M, W, H, V, R	A = Axial ribbon B = Radial ribbon C = Center ribbon D = Special E = Axial wire F = Radial wire N = Chip Note: C11 only available with A, B, D or N options	X = Standard Y = Reduced Visual A = MIL- PRF-55681 Group A C = MIL- PRF-55681 Group C D = Customer Specified	C11 0, 1, 2, 5 C17 0, 1, 2, 3, 4, 5 C18 0, 1, 2, 5 C22/40 0, 1	C11/17/18 T, V, W, B, P, S C22 T, B, P, S C40 T, B, P, S, R

VC1 Residual Capacitors - X7R

The VC1 residual capacitance range MLCCs provide a more stable capacitance value with voltage - not to drop below 50% of the 1Vrms 1kHz value, up to full rated DC voltage, at room temperature.

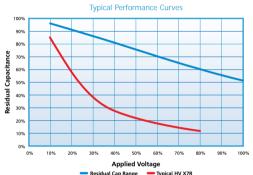
They can be operated continuously at full rated voltage, but if derated will maintain a larger percentage of their original capacitance value, e.g. at 80% RV capacitance value equals 60% approx - see graph.

Defined capacitance value in case sizes from 0805 to 3640, with voltage rating up to 3kV. Ideal for Power supplies, capacitance critical circuits, smoothing circuits and EMI suppression.

Operating Temperature

-55°C to +125°C

Temperature Coefficient (Typical)


± 15%

Insulation Resistance at +25°C

Time constant (Ri xCr) (whichever is the least) 100G $\!\Omega$ or 1000s

Ageing Rate

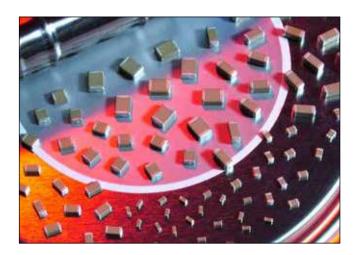
Typical 1% per time decade

Minimum/maximum capacitance values - VC1 Capacitors

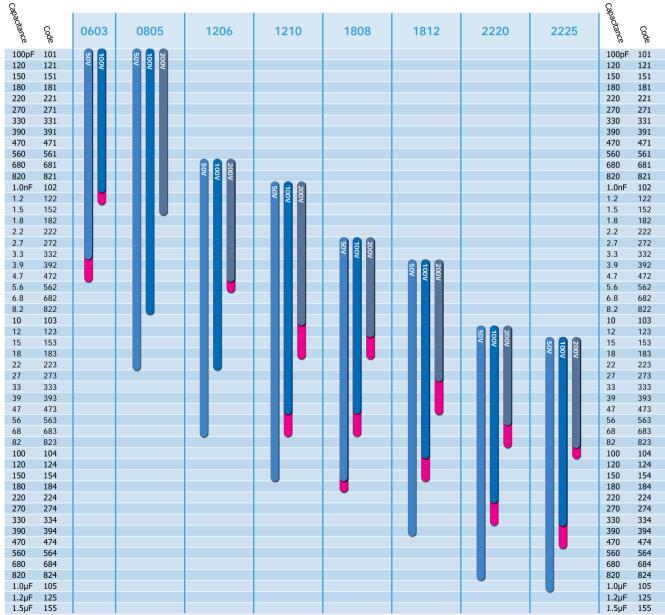
Chip Size	0805	1206	1210	1808	1812	2220	2225	3640
Min Cap	100pF	150pF	220pF	220pF	470pF	1nF	1nF	2.2nF
250V	12nF	39nF	82nF	82nF	220nF	680nF	1μF	1.8µF
500V	2.2nF	6.8nF	15nF	15nF	56nF	150nF	220nF	560nF
630V	1.5nF	4.7nF	8.2nF	8.2nF	39nF	100nF	120nF	470nF
1000V	390pF	1.5nF	2.7nF	2.7nF	15nF	39nF	56nF	180nF
1200V	-	1nF	2.2nF	2.2nF	10nF	27nF	39nF	120nF
1500V	-	560pF	1.2nF	1.2nF	5.6nF	15nF	22nF	68nF
2000V	-	270pF	560pF	560pF	3.3nF	10nF	12nF	39nF
2500V	-	-	-	-	1.8nF	5.6nF	8.2nF	22nF
3000V	-	-	-	-	-	3.9nF	5.6nF	12nF
7" reel qty	3,000	2,500	2,000	500	500	500	500	n/a
13" reel qty	12,000	10,000	8,000	2,000	2,000	2,000	2,000	500

Note: Other capacitance values may become available, please contact the Sales Office if you need values other than those shown in the above table. For dimensions and soldering information, please go to our website www.knowlescapacitors.com

Ordering information - VC1 Capacitors

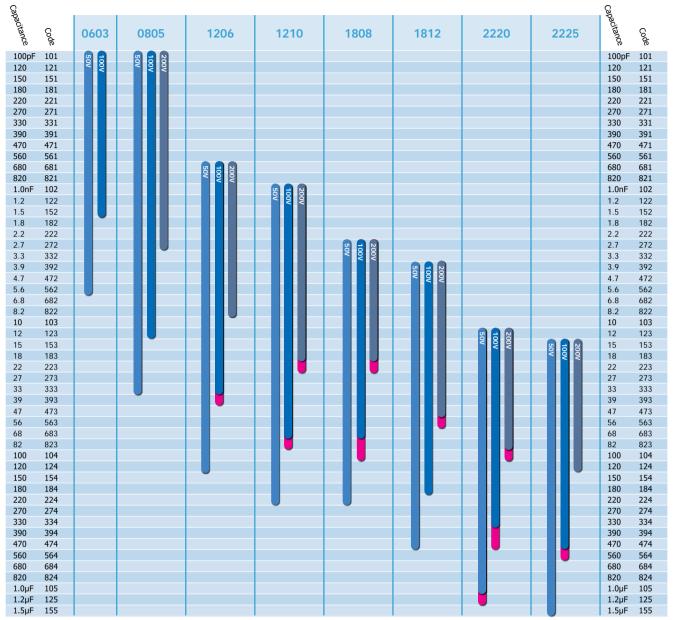

1206	Υ	1K0	0152	K	X	T	VC1
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric	Packaging	Suffix
0805 1206 1210 1808 1812 2220 2225 3640	Y = FlexiCap [™] termination base with nickel barrier (100% matte tin plating). RoHS compliant.	250 = 250V 500 = 500V 630 = 630V 1K0 = 1kV 1K2 = 1.2kV 1K5 = 1.5kV 2K0 = 2.0kV 2K5 = 2.5kV 3K0 = 3.0kV	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of 0's following Example: 0152 = 1500pF	$J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	X = X7R	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs	

TCC/VCC Capacitors - (BX & BZ) X7R


X7R capacitors with a defined capacitance variation under applied dc voltage, across the full operating temperature range.

Whilst the capacitance of COG/NPO chips does not vary with applied voltage, standard X7R capacitors exhibit capacitance fluctuation but with no specified limit.

For applications where a limit is required, Knowles is able to offer either a "B" code dielectric (conforms to MIL "BX" dielectric and IECQ-CECC "2X1") or "R" code dielectric (conforms to MIL "BZ" dielectric and IECQ-CECC "2C1").


TCC/VCC Capacitors - 2X1 (BX)

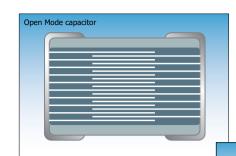
● = non RoHS compliant and FlexiCap™ termination only. Other values available in J, Y (FlexiCap™) and F terminations.

TCC/VCC Capacitors - (BX & BZ) X7R

TCC/VCC Capacitors - 2C1 (BZ)

= non RoHS compliant and FlexiCap™ termination only. Other values available in J, Y (FlexiCap™) and F terminations.

Ordering information - TCC/VCC Capacitors


0603	J	050	0471	J	В	В	
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric	Packing	Suffix code
0603 0805 1206 1210 1808 1812 2220 2225	Y = FlexiCap™ termination base with Ni barrier (100% matte tin plating). RoHS compliant. H = FlexiCap™ termination base with Ni barrier (Tin/lead plating with min. 10% lead). Not RoHS compliant. F = Silver Palladium. RoHS compliant. J = Nickel barrier (100% matte tin plating). RoHS compliant. Lead free. A = Nickel barrier (Tin/lead plating with min. 10% lead). Not RoHS compliant.	050 = 50V 100 = 100V 200 = 200V	1st digit is 0. 2nd and 3rd digits are significant figures of capacitance code. The 4th digit is number of 0's following eg. 0471 = 470pF 0824 = 820nF	$G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	B = 2X1/BX released in accordance with IECQ- CECC R = 2C1/BZ released in accordance with IECQ- CECC	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs	Used for specific customer requirements

Open Mode and Tandem Capacitors - X7R

Open Mode capacitors have been designed specifically for use in applications where mechanical cracking is a severe problem and short circuits due to cracking are unacceptable.

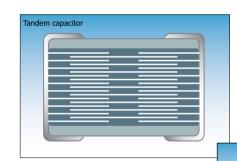
Open Mode capacitors use inset electrode margins, which prevent any mechanical cracks which may form during board assembly from connecting to the internal electrodes.

When combined with FlexiCapTM termination, Open Mode capacitors provide a robust component with the assurance that if a part becomes cracked, the crack will be unlikely to result in short circuit failure.

Open Mode max capacitance (X7R only)

_	AE	- 0	20	n -		ified
=	AE	u	20	υu	uai	шеа

	0603	080) 5	120	06	121	10	1808	1812	22	20	22	25
16V	39nF	100nF	150nF	220nF	470nF	470nF	680nF	680nF	1.5 µ F	3.3	βμF	4.7	⁄μF
25V	33nF	100nF	120nF	220nF	330nF	470nF	560nF	560nF	1.2µF	2.2	PμF	3.9	μF
50/63V	22nF	100	nF	220	nF	470	nF	470nF	1.0µF	1.5	μF	2.7	⁄μF
100V	6.8nF	27r	ηF	100	InF	220	nF	220nF	680nF	1.0	μF	1.5µF	1.8µF
200/250V	2.7nF	22r	ηF	681	nF	100	nF	100nF	330nF	680)nF	1.0)μF
500V	-	5.6	nF	39	nF	68r	ηF	68nF	180nF	330	OnF	390	OnF
630V	-	-		22	nF	33r	ηF	27nF	100nF	180	OnF	220	OnF
1kV	-	-		6.8	BnF	15r	ηF	15nF	47nF	82nF	100nF	100	OnF


Qualification included cracking the components by severe bend tests. Following the bend tests cracked components were subjected to endurance / humidity tests, with no failures evident due to short circuits.

Note: Depending on the severity of the crack, capacitance loss was between 0% and 70%.

Tandem Capacitors have been designed as a fail safe range using a series section internal design, for use in any application where short circuits would be unacceptable.

When combined with $FlexiCap^{TM}$ termination, Tandem capacitors provide an ultra robust and reliable component, for use in the most demanding applications.

Non-standard voltages are available. For more information please consult the Sales Office.

Tandem max capacitance (X7R only)

=	AEC	-Q200	qua	lifie
		-		

	0603	0805	1206	1210	1812	2220	2225
16V	12nF	47nF	150nF	270nF	560nF	1.2µF	1.5µF
25V	10nF	39nF	120nF	220nF	470nF	1.0μF	1.2µF
50/63V	6.8nF	33nF	100nF	180nF	390nF	680nF	1.0µF
100V	2.2nF	10nF	47nF	82nF	220nF	470nF	680nF
200/250V	1.0nF	4.7nF	22nF	47nF	100nF	220nF	330nF

Note: Depending on the severity of the crack, capacitance loss was between 0% and 50%.

Ordering information - Open Mode and Tandem Capacitors

1206	Υ	050	0224	K	X	T	
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric codes	Packaging	Suffix code
0603 0805 1206 1210 1808 1812 2220 2225	Y = FlexiCap™ termination base with nickel barrier (100% matte tin plating). RoHS compliant.	016 = 16V 025 = 25V 050 = 50V 063 = 63V 100 = 100V 200 = 200V 250 = 250V 500 = 500V 630 = 630V 1KO = 1kV	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following. Example: 0224 = 220000pF	$J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	X = X7R S = X7R BME (AEC-Q200) E = X7R (AEC-Q200 product)	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays	M01 = Open Mode capacitor T01 = Tandem capacitor

IECQ-CECC range - Specialty High Rel. and approved parts

A range of specialist, high reliability, multilayer ceramic capacitors for use in critical or high reliability environments. All fully tested / approved and available with a range of suitable termination options, including tin/lead plating and Knowles FlexiCap $^{\text{TM}}$.

Ranges include:

- 1. Range tested and approved in accordance with IECQ-CECC QC32100.
- 2. Range qualified to the requirements of Knowles detail specification S02A-0100 (based on ESCC 3009).

IECQ-CECC - maximum capacitance values

		0603	0805	1206	1210	1808	1812	2220	2225
161/	COG/NPO	1.5nF	6.8nF	22nF	33nF	33nF	100nF	150nF	220nF
16V	X7R	100nF	330nF	1.0μF	1.5μF	1.5μF	3.3µF	5.6µF	6.8µF
25V	COG/NPO	1.0nF	4.7nF	15nF	22nF	27nF	68nF	100nF	150nF
25 V	X7R	56nF	220nF	820nF	1.2μF	1.2μF	2.2μF	4.7μF	5.6µF
50/63V	COG/NPO	470pF	2.7nF	10nF	18nF	18nF	33nF	68nF	100nF
50/63V	X7R	47nF	220nF	470nF	1.0μF	680nF	1.5μF	2.2µF	3.3µF
100V	COG/NPO	330pF	1.8nF	6.8nF	12nF	12nF	27nF	47nF	68nF
1000	X7R	10nF	47nF	150nF	470nF	330nF	1.0μF	1.5µF	1.5µF
200/	COG/NPO	100pF	680pF	2.2nF	4.7nF	4.7nF	12nF	22nF	27nF
250V	X7R	5.6nF	27nF	100nF	220nF	180nF	470nF	1.0μF	1.0μF
500V	COG/NPO	n/a	330pF	1.5nF	3.3nF	3.3nF	10nF	15nF	22nF
300V	X7R	n/a	8.2nF	33nF	100nF	100nF	270nF	560nF	820nF
1kV	COG/NPO	n/a	n/a	470pF	1.0nF	1.2nF	3.3nF	8.2nF	10nF
IKV	X7R	n/a	n/a	4.7nF	15nF	18nF	56nF	120nF	150nF

Ordering information - IECQ-CECC range

1210	Υ	100	0103	J	D	Т	
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric Release codes	Packaging	Suffix code
0603 0805 1206 1210 1808 1812 2220 2225	Y = FlexiCap™ termination base with Ni barrier (100% matte tin plating). RoHS compliant. H = FlexiCap™ termination base with Ni barrier (Tin/lead plating with min. 10% lead). Not RoHS compliant. F = Silver Palladium. RoHS compliant. J = Nickel barrier (100% matte tin plating). RoHS compliant. Lead free. A = Nickel barrier (Tin/lead plating with min. 10% lead). Not RoHS compliant.	016 = 16V 025 = 25V 050 = 50V 063 = 63V 100 = 100V 200 = 200V 250 = 250V 500 = 500V 630 = 630V 1K0 = 1kV	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following Example: 0103 = 10nF	<10pF B = ±0.1pF C = ±0.25pF D = ±0.5pF ≥10pF F = ±1% G = ±2% J = ±5% K = ±10% M = ±20%	D = X7R (2R1) with IECQ-CECC release F = COG/NPO (1B/NPO) with IECQ-CECC release B = 2X1/BX released in accordance with IECQ-CECC R = 2C1/BZ released in accordance with IECQ-CECC For B and R codes please refer to TCC/VCC range for full capacitance values	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays	Used for specific customer require- ments

Automotive Grade Capacitors - AEC-Q200 range

We offer a range of high quality automotive grade components. With AEC-Q200 approved ranges up to a voltage rating of 3kV we provide for the requirements of modern automotive applications including EV and HEV.

Ranges include :-

- 1. Standard MLCCs
- 2. StackiCap[™] large capacitance/small case size MLCCs
- 3. Open Mode and Tandem capacitors
- 4. 3 terminal EMI components
- 5. X2Y Integrated Passive Component
- 6. X8R high temperature MLCCs
- 7. Safety Certified MLCCs

All fully tested / approved and available with a range of suitable termination options, including tin/lead plating and Knowles $FlexiCap^{TM}$.

AEC-Q200 MLCC range - maximum capacitance values

		0603	0805	1206	1210	1808	18	12	1825	22	20	2225	36	40
								StackiCap™ 3.2mm max thickness			StackiCap™ 4.2mm max thickness			StackiCap™ 4.2mm max thickness
50/	COG/NPO	1nF	4.7nF	15nF	27nF	27nF	47nF	-	82nF	100nF	-	150nF	220nF	-
63V	X7R	100nF *	220nF	470nF	1μF	-	2.2µF	-	2.2μF	3.3µF	-	3.3µF	4.7µF	-
	COG/NPO	470pF	2.2nF	8.2nF	15nF	15nF	39nF	-	47nF	56nF	-	68nF	180nF	-
100V	X7R	47nF	100nF	220nF	680nF	-	1μF	-	1.5μF	1.5μF	-	2.2μF	3.3µF	-
	X8R	-	33nF	100nF	220nF	220nF	470nF	-	-	1.0µF	-	1.5µF	-	-
000/	COG/NPO	220pF	1nF	3.9nF	8.2nF	8.2nF	18nF	-	27nF	33nF	-	33nF	82nF	-
200/ 250V	X7R	10nF	47nF	150nF	330nF	-	680nF	1.0µF	1.0μF	1.0μF	-	1.5μF	1.5μF	-
2300	X8R	-	15nF	68nF	150nF	150nF	330nF	-	-	680nF	-	1.0µF	-	-
	COG/NPO	-	680pF	2.7nF	6.8nF	5.6nF	15nF	-	18nF	22nF	-	22nF	56nF	-
500V	X7R	-	15nF	68nF	150nF	-	330nF	470nF	560nF	560nF	-	680nF	1.0μF	-
	X8R	-	4.7nF	22nF	47nF	47nF	120nF	-	-	330nF	-	470nF	=	-
	COG/NPO	-	560pF	2.7nF	6.8nF †	3.9nF	15nF	-	10nF	15nF	-	15nF	39nF	-
630V	X7R	-	10nF	47nF	100nF	-	150nF	330nF	200nF	330nF	1.0µF	390nF	680nF	-
	X8R	-	2.2nF	10nF	33nF	33nF	68nF	-	-	180nF	-	220nF	=	-
	COG/NPO	-	150pF	1.5nF	2.2nF	2.2nF	5.6nF	-	10nF	10nF	-	10nF	22nF	-
1kV	X7R	-	4.7 nF	10nF	47nF	-	68nF	180nF	200nF	120nF	470nF	150nF	180nF	1.0µF
	X8R	-	1.5nF	3.3nF	6.8nF	6.8nF	27nF	-	-	68nF	-	82nF	-	-
	COG/NPO	-	68pF	390pF	680pF	1.0nF	3.3nF	-	4.7nF	4.7nF	-	6.8nF	18nF	-
1.2kV	X7R	-	-	3.3nF	18nF	-	33nF	100nF	68nF	82nF	-	100nF	150nF	-
	X8R	-	-	2.2nF	5.6nF	5.6nF	15nF	-	-	47nF	-	56nF	-	-
	COG/NPO	-	68pF	390pF	680pF	680pF	2.2nF	-	3.9nF	4.7nF	-	4.7nF	12nF	-
1.5kV	X7R	-	-	2.7nF	6.8nF	-	22nF	-	47nF	47nF	-	68nF	100nF	-
	X8R	-	-	1.5nF	3.3nF	3.3nF	10nF	-	-	27nF	-	33nF	-	-
	COG/NPO	-	47pF	220pF	470pF	470pF	1.5nF	-	1.8nF	2.2nF	-	2.2nF	5.6nF	-
2kV	X7R	-	-	2.2nF	4.7nF	-	10nF	-	10nF	27nF	-	33nF	47nF	-
	X8R	-	-	680pF	1.5nF	1.5nF	5.6nF	-	-	15nF	-	22nF	=	-
2.5kV	COG/NPO	-	-	100pF	180pF	270pF	680pF	-	-	1.5nF	-	-	-	-
2.5KV	X8R	-	-	-	-	1.2nF	3.3nF	-	-	10nF	-	12nF	-	-
3kV	COG/NPO		-	68pF	150pF	220pF	470pF	-	-	1nF	-	-	-	-
- SKV	X8R	-	-	-	-	820pF	2.7nF	-	-	5.6nF	-	6.8nF	-	-

Notes: 1) * 0603 Max thickness 0.9mm above 56nF, FB6 suffix code. 2) † 1210 Max thickness 2.2mm as suffix AG1. 3) See page 62 for full details of the StackiCap™ range.

Safety Certified Capacitors

Dielectric	Approval Body	X1 PY2		X2 SP	Y2/X1 SP		Y2/X1 B16	X2 B17
		1808	1812	1808	2211	2215	2220	2220
COG/NPO	TÜV, UL	4.7pF - 390pF 4.7pF - 390pF		4.7pF - 1.5nF	4.7pF - 1.0nF 820pF - 1.0nF		-	-
X7R	TÜV, UL	150pF - 1nF	150pF - 2.2nF	150pF - 4.7nF	100pF - 3.9nF	2.7nF - 3.9nF	150pF - 10nF	150pF - 22nF (TÜV approval only)

Note: See pages 66 and 67 for full details of 250Vac Safety Certified AC Capacitors and ordering information.

Automotive Grade Capacitors - AEC-Q200 range

AEC-Q200 range - Open Mode - max capacitance values

	0603	0805	1206	1210	1808	1812	2220	2225
	X7R	X7R	X7R	X7R	X7R	X7R	X7R	X7R
50/63V	22nF	100nF	220nF	470nF	470nF	1.0μF	1.5µF	2.7µF
100V	6.8nF	27nF	100nF	220nF	220nF	680nF	1.0μF	1.5µF
200/250V	2.7nF	15 nF	68nF	100nF	100nF	330nF	680nF	1.0µF
500V	-	5.6nF	39nF	68nF	68nF	180nF	330nF	390nF
630V	-	·	22nF	33nF	27nF	100nF	180nF	220nF
1kV	-	-	6.8nF	15nF	15nF	47nF	82nF	100nF

See page 56 for full details of the product range.

AEC-Q200 range - Tandem - max capacitance values

	0603	0805	1206	1210	1812
	X7R	X7R	X7R	X7R	X7R
50/63V	6.8nF	33nF	100nF	180nF	390nF
100V	2.2nF	10nF	47nF	82nF	220nF
200/250V	1.0nF	4.7nF	22nF	47nF	100nF

See page 56 for full details of the product range.

AEC-Q200 range - 3 Terminal EMI Components (E01 & E07) - max capacitance values

			E01		E07				
		0805	1206	1806	0805	1206	1806		
50V	COG/NPO	820pF	1.0nF	2.2nF	220pF	1nF	1.5nF		
5UV	X7R	47nF	100nF	200nF	47nF	100nF	200nF		
1001/	COG/NP0	560pF	1.0nF	2.2nF	120pF	560pF	680pF		
100V	X7R	15nF	15nF	68nF	15nF	15nF	68nF		

Note: For some lower capacitance parts, higher voltage rated parts may be supplied. See page 92 for full details of the product range.

AEC-Q200 range - X2Y Integrated Passive Components (E03) - capacitance values

		0805	1206	1410	1812
FOV	COG/NP0	390pF - 470pF	1.2nF - 1.5nF	4.7nF - 5.6nF	8.2nF - 10nF
50V	X7R	18nF - 33nF	56nF - 150nF	180nF - 330nF	390nF - 560nF
1001/	COG/NP0	10pF - 330pF	22pF - 1.0nF	100pF - 3.9nF	820pF - 6.8nF
100V	X7R	470pF - 15nF	1.5nF - 47nF	4.7nF - 150nF	8.2nF - 330nF

Note: For some lower capacitance parts, higher voltage rated parts may be supplied. See page 94 for full details of the product range.

Ordering information - AEC-Q200 ranges

1210	Υ	100	0103	K	S	T	
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric Release codes	Packaging	Suffix code
0603 0805 1206 1210 1808 1812 1825 2220 2225 3640	Y = FlexiCap™ termination base with Ni barrier (100% matte tin plating). RoHS compliant. H = FlexiCap™ termination base with Ni barrier (Tin/lead plating with min. 10% lead). Not RoHS compliant. J = Nickel barrier (100% matte tin plating). RoHS compliant. Lead free. A = Nickel barrier (Tin/lead plating with min. 10% lead). Not RoHS compliant. Note: AEC-Q200 X7R is only available in Y or H termination.	050 = 50V 063 = 63V 100 = 100V 200 = 200V 500 = 250V 500 = 500V 630 = 630V 1K0 = 1kV 1K2 = 1.2kV 1K5 = 1.5kV 2K0 = 2kV 2K5 = 2.5kV 3K0 = 3kV	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following Example: 0103 = 10nF	$F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	S = X7R (BME) AEC-Q200 E = X7R (2R1) AEC-Q200 A = COG/NP0 (1B/NP0) AEC-Q200 T = X8R with AEC-Q200 release	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays	WS2 = StackiCap™ M01 = Open Mode T01 = Tandem E01 & E07= 3 terminal EMI component E03 = X2Y product

High Capacitance Chip - X7R, X5R

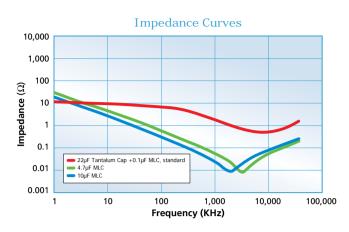
A range of High Capacitance value BME MLC chip capacitors, in stable Class II dielectrics X7R and X5R, with a spread of capacitance values offered up to $100\mu F$.

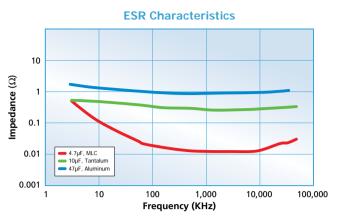
Comparable circuit designs can be achieved at typically a third to a fifth of the capacitance values because of the low ESR characteristics these parts exhibit. As a consequence they are also ideal to replace Tantalum and Low ESR Electrolytic Capacitors without polarity concerns. They find application as power supply bypass capacitors, smoothing capacitors, input/output filters in DC-DC Converters and in digital circuits and LCD modules.

Parts are RoHS Compliant and suitable for reflow soldering process.

- Nickel Barrier terminations with tin, tin/lead or gold flash
- Capacitance tolerances available: ±10%, ±20%
- Available with high reliability screening. Contact the Knowles Capacitors Sales Office for details

Capacitance values - High Capacitance Chip


Size	04	02	06	03	08	05	12	06		12	10		18	12
Tmax inches: mm:	0.0 0.)24 61	0.0		0.0 1.3			0.072* 1.83		85* 16	0.1 2.	10* 79	0.110* 2.79	
Dielectric	X7R	X5R	X7R	X5R	X7R	X5R	X7R	X5R	X7R	X5R	X7R	X5R	X7R	X5R
4V				22µF†				100µF†						-
6.3V	470nF	1μF 2.2μF† 4.7μF†		4.7μF 10μF†		22µF†		47μF†		47µF†	47µF†	100µF†		-
10V		1µF	2.2µF	4.7μF 10μF†	10μF†	10μF	22µF†	22µF†		22µF†		47μF†		-
16V	15nF 22nF 33nF 47nF 100nF 220nF	220nF 470nF 100nF 220nF 470nF	100nF 1μF	2.2μF 4.7μF	470nF 1.0μF 2.2μF 4.7μF†	4.7μF 10μF	10μF	10μF 22μF†	4.7μF† 10μF†			22µF†		-
25V	6.8nF 10nF 47nF 100nF	10nF 220nF	470nF 1.0μF	220nF 470nF 1.0µF 2.2µF	1.0μF 2.2μF 4.7μF	2.2μF 4.7μF	2.2μF 4.7μF 10μF	4.7μF 10μF	3.3μF† 4.7μF†	4.7μF† 10μF†	22µF†			-
35V										2.2μF† 4.7μF†		10μF		-
50V	10nF	100nF	220nF 470nF	100nF 470nF 1.0μF	220nF 470nF 1.0μF	220nF 470nF 1.0µF 2.2µF	470nF 1.0μF 2.2μF 4.7μF	4.7μF	1.0μF		4.7μF†	4.7μF† 10μF†		-
100V			100nF		220nF		1.0µF		1.0µF 2.2µF				1.0µF 2.2µF	-


 $^{^{*}}$ Denotes non standard chip thickness. Order code needs to have an 'X' inserted together with the dimension in inches -e.g. X072 where dimension is 0.072".

[†] Denotes only available in ±20% capacitance tolerance

High Capacitance Chip - X7R, X5R

Comparison with other dielectric capacitors

Dielectric characteristics

	X7R (BB) Stable	X5R (BW) Stable		
Operating temperature range:	-55°C to 125°C	-55°C to 85°C		
Temperature coefficient:	±15% ΔC Max.	±15% ΔC Max.		
Dissipation factor:	$\begin{array}{lll} 3.5\% \text{ max except:} \\ 0402 \geq 0.1 \mu F = 5\%, & 1206 \geq 2.2 \mu F = 10\%, \\ 0603 \geq 0.22 \mu F = 10\%, & 1210 \geq 4.7 \mu F = 5\%, \\ 0805 \geq 1.0 \mu F = 5\%, & 1210 \geq 22 \mu F = 10\%, \\ 0805 \geq 2.2 \mu F = 10\%, & \end{array}$	5% max except: $0402 \geq 1.0 \mu F = 10\%, \\ 0603 \geq 1.0 \mu F = 10\%, \\ 0805 \geq 4.7 \mu F = 10\%, \\ 1206 \geq 4.7 \mu F = 10\%,$		
Insulation resistance @25°C:	>10G Ω or >100 Ω F whichever is less	>10G Ω or >100 Ω F whichever is less		
Dielectric withstanding voltage:	250%	250%		
Ageing Rate:	X7R 3.5% typical	X5R 5% typical		
		1KHz, 1.0 ±0.2 VRMS		
Test parameters @ 25°C:	1KHz, 1.0 ±0.2 VRMS	120Hz, 0.5 ±0.1 VRMS for 22μF, 47μF & 100μF		

Ordering information - High Capacitance Chip Capacitors

1206	W	476	K	6R3	N	X080	Т
Chip sizes	Dielectric	Capacitance	Tolerance	Voltage-VDCW	Termination	Thickness option	Packing
0402 0603 0805 1206 1210 1812	BB* = X7R BW*= X5R	Value in Picofarads. Two significant figures, followed by number of zeros: 476 = 47µF (47,000,000pF)	$K = \pm 10\%$ $M = \pm 20\%$	Two significant figures, followed by number of zeros. R denotes decimal point: 6R3 = 6.3V 501 = 500V	N = Nickel Barrier (100% tin) Y = Nickel Barrier (90% tin/10% lead) NG = Nickel Barrier Gold Flash	Blank = Standard thickness X = special thickness, specified in inches: X085 = 0.085"	No suffix = Bulk T = Tape & Reel
	*Formerly B & W codes						

Note: BME parts available with added high reliability test. Consult the factory.

StackiCap™ Capacitors - X7R

The StackiCap™ range offers a significant reduction in 'PCB real estate' for an equivalent capacitance value when board space is at a premium. For example, a standard 150nF chip in a 8060 case size is now available in a much smaller 3640 case size.

Knowles's unique patented* construction and FlexiCap™ termination material make the StackiCap™ range suitable for applications including: power supplies, lighting, aerospace electronics and high voltage applications where a large amount of capacitance is required. Further developments are on-going, please contact the Sales Office for details of the full range.

* StackiCap™ technology is protected by international patents (pending) EP2847776, WO2013186172A1, US20150146343A1 and CN104471660A.

Insulation resistance

Time Constant (RxCr) (whichever is the least - 500s or $500M\Omega$)

Maximum capacitance Up to 5.6μF Maximum voltage Up to 2kV

Maximum capacitance values - StackiCap™ Capacitors

Chip size	1812	2220	3640
Thickness max.	3.2mm	4.2mm	4.2mm
200/250V	1.0μF	2.2μF	5.6 µF
500V	470nF	1.2μF	2.7µF
630V	330nF	1.0μF	2.2µF
1kV	180nF	470nF	1.0µF
1.2kV	100nF	220nF	470nF
1.5kV	56nF	150nF	330nF
2kV	33nF	100nF	150nF

= AEC-Q200

Ordering information - StackiCap™ Capacitors

1812	Υ	500	0474	K	J	T	WS2
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric	Packaging	Suffix code
1812 2220 3640	Y = FlexiCap™ termination base with nickel barrier (100% matte tin plating). RoHS compliant. Lead free. H = FlexiCap™ Termination base with nickel barrier (Tin/lead plating with minimum 10% lead). Not RoHS compliant.	200/250 = 200/250V 500 = 500V 630 = 630V 1K0 = 1kV 1K2 = 1.2kV 1K5 = 1.5kV 2K0 = 2kV	First digit is 0. Second and third digits are significant figures of capacitance code in picofarads (pF). Fourth digit is number of zeros eg. 0474 = 470nF Values are E12 series	$J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	J = X7R (BME) E = X7R (2R1) AEC-Q200 S = X7R (BME) AEC-Q200 X = X7R	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays	WS2

Reeled quantities - StackiCap™ Capacitors

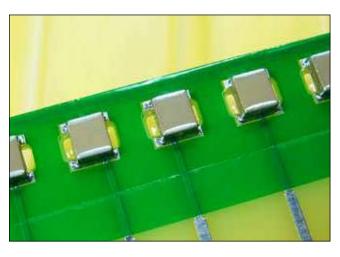
	1812	2220	3640
178mm (7") Reel	500	500	-
330mm (13") Reel	2,000	2,000	500

Note: Parts in this range may be defined as dual-use under export control legislation as such may be subject to export licence restrictions.

Please refer to page 12 for more information on the dual-use regulations and contact the Sales Office for further information on specific part numbers.

NC Capacitors - X7R

MLCCs are particularly suitable for high voltage applications where small size is required. For standard high voltage capacitors a coating may be required to be applied post soldering.


The NC range is designed to achieve the maximum capacitance range possible for a given component size and high voltage, but 100% coating of the chip after mounting, including especially between the board and the component (between the mounting pads) is mandatory to ensure flashover does not occur. To ensure the coating achieves total coverage around all four exposed sides of the chip, it may be necessary to slot or cut the PCB under the chip. Knowles / Syfer application note AN0043 gives more information on the coating requirements.

This range is fully compliant with the RoHS, REACH and WEEE directives.

Operating Temperature
-55°C to +125°C

Temperature Coefficient (Typical)

± 15%

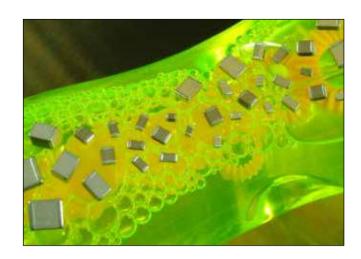
Insulation Resistance at $+25^{\circ}$ C Time constant (Ri xCr) (whichever is the least) $100G\Omega$ or 1000s Ageing Rate Typical <2% per time decade

Minimum/maximum capacitance values - NC Capacitors

Chip size	1206	1210	1808	1812	2220
Min Cap	220pF	680pF	330pF	470pF	1.0nF
2kV	3.3nF	5.6nF	5.6nF	12nF	-
2.5kV	2.7nF	4.7nF	4.7nF	8.2nF	22nF
3kV	1.5nF	3.3nF	3.3nF	4.7nF	10nF
4kV	-	-	2.2nF	3.3nF	6.8nF
5kV	-	-	-	-	4.7nF
7" reel qty	2,500	2,000	500	500	500
13" reel qty	10,000	8,000	2,000	2,000	2,000

Note: Other capacitance values may become available, please contact the Sales Office if you need values other than those shown in the above table. For dimensions and soldering information, please go to our website www.knowlescapacitors.com.

Ordering information - NC Capacitors


1206	J	3K0	0102	K	X	Т	NC
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric	Packaging	Suffix
1206 1210 1808 1812 2220	Y = FlexiCap™ termination base with nickel barrier (100% matte tin plating). RoHS compliant. Lead free. J = Nickel barrier (100% matte tin plating). RoHS compliant. Lead free.	2KO = 2kV 2K5 = 2.5kV 3KO = 3kV 4KO = 4kV 5KO = 5kV	First digit is 0. Second and third digits are significant figures of capacitance code. Fourth digit is number of zeros eg. 0102 = 1000pF Values are E24 series	$J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	X = X7R	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays	NC Range

250Vac Rated 50/60Hz AC Capacitors - COG/NPO & X7R

Industry wide standard multilayer ceramic capacitors are supplied with a DC rating only. For AC use, Surge and Safety capacitors with an AC rating of 250Vac have been available but the capacitance range is limited as a result of the strict impulse and VP requirements in the international standards. Knowles Technology have developed a range which provides a solution for use at up to 250Vac 60Hz continuous use and provides for non safety-critical applications where extended capacitance ranges are required.

Capacitance range

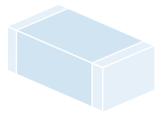
Case sizes 0805 to 2220 are available in both X7R and COG/NP0 dielectrics with capacitances of up to 120nF. The capacitance ranges are divided into four groups which are based on the voltage coefficient of capacitance, COG/NP0 which has negligible capacitance shift with applied voltage and three subgroups of X7R. Type A with $\pm 30\%$ maximum capacitance shift 0V-240V, Type B with $\pm 30\%$ to -50% maximum capacitance shift 0V-240V and Type C with $\pm 30\%$ to -80% maximum capacitance shift 0V to 240V.

250Vac Rated 50/60Hz AC capacitors - minimum/maximum capacitance values

Chip size	0805	1206	1210	1808	1812	2220
COG/NPO	1.0pF - 470pF	1.0pF - 1.2nF	4.7pF - 2.2nF	4.7pF - 2.2nF	10pF - 5.6nF	10pF - 10nF
X7R A ‡30%	560pF - 1.5nF	1.5nF - 10nF	2.7nF - 22nF	2.7nF - 22nF	6.8nF - 56nF	12nF - 120nF
X7R B +30% -50%	1.8nF - 3.3nF	12nF	27nF	27nF	68nF - 82nF	-
X7R C +30% -80%	3.9nF - 10nF	15nF - 47nF	33nF - 100nF	33nF - 100nF	100nF - 120nF	-

Note: X7R A) has a VCC of ±30% over 0 to 240Vac 60Hz

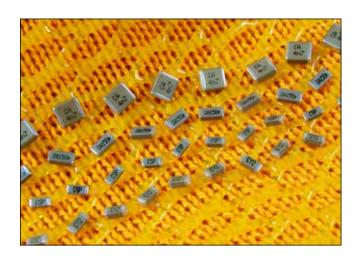
X7R B) has a VCC of +30% to -50% over 0 to 240Vac 60Hz

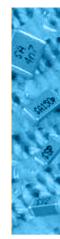

X7R C) has a VCC of +30% to -80% over 0 to 240Vac 60Hz

Measurement conditions described in Knowles Application Notes AN0033. Please see our website www.knowlescapacitors.com for further details.

Ordering information - 250Vac Rated 50/60Hz AC capacitors

1812	Υ	A25	0103	K	J	T
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric codes	Packaging
0805 1206 1210 1808 1812 2220	Y = FlexiCap [™] termination base with nickel barrier (100% matte tin plating). RoHS compliant. J = Nickel barrier (100% matte tin plating). RoHS compliant. Lead free.	A25 = 250Vac 60Hz	<10pF Insert a P for the decimal point, eg P300 = 0.3pF, 8P20 = 8.2pF. ≥10pF 1st digit is 0. 2nd and 3rd digits are significant figures of capacitance code. The 4th digit is number of 0's following eg. 0103 = 10nF	<10pF $B = \pm 0.1pF$ $C = \pm 0.25pF$ $D = \pm 0.5pF$ $\geqslant 10pF$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	C = COG/NP0 J = X7R (BME) X = X7R	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays

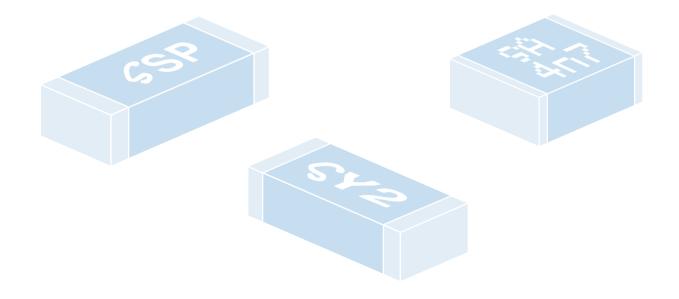




250Vac Safety Certified AC Capacitors

Safety Certified capacitors comply with international UL and $T\ddot{U}V$ specifications to offer designers the option of using a surface mount ceramic multilayer capacitor to replace leaded film types. Offering the benefits of simple pick-and-place assembly, reduced board space required and lower profile, they are also available in a FlexiCapTM version to reduce the risk of mechanical cracking.

Knowles's high voltage capacitor expertise means the range offers among the highest range available of capacitance values in certain case sizes. Applications include: modems, AC-DC power supplies and where lightning strike or other voltage transients represent a threat to electronic equipment.



- Surface mount multilayer ceramic capacitors
- Meet Class Y2/X1, X1 and X2 requirements
- Approved for mains ac voltages, up to 250Vac
- Approved by UL and TÜV
- Sizes 1808, 1812, 2211, 2215 and 2220
- Smaller sizes suitable for use in equipment certified to EN60950
- Certification specifications for larger sizes include IEC/EN60384-14, UL/CSA60950 and UL60384-14
- Surface mount package
- Reduces board area and height restrictions
- Reduced assembly costs over conventional through hole components
- FlexiCap[™] option available on all sizes

Class	Rated voltage	Impulse voltage	Insulation bridging	May be used in primary circuit
Y1	250Vac	8000V	Double or reinforced	Line to protective earth
Y2	250Vac	5000V	Basic or supplementary*	Line to protective earth
Y4	150Vac	2500V	Basic or supplementary*	Line to protective earth
X1	250Vac	4000V	-	Line to line
X2	250Vac	2500V	-	Line to line
Х3	250Vac	None	-	Line to line

^{* 2} x Y2 or Y4 rated may bridge double or reinforced insulation when used in series.

250Vac Safety Certified AC Capacitors - Certification Chart

Classification and approval specification - Safety Certified capacitors

CHIP SIZE	SUFFIX CODE	DIELECTRIC	CAP RANGE	CLASSIFICATION	APPROVAL SPECIFICATION	APPROVAL BODY	AEC-Q200
1808	SP (1)	COG/NP0	4.7pF to 1.5nF	X2 NWGQ2, NWGQ8	IEC60384-14 EN60384-14 UL-60950-1, 2nd Ed CSA 60950-1-07 2nd Ed	TÜV UL	TÜV & UL FULL RANGE
1808	SP ⁽¹⁾	X7R	150pF to 4.7nF	X2 NWGQ2, NWGQ8	IEC60384-14 EN60384-14 UL-60950-1, 2nd Ed CSA 60950-1-07 2nd Ed	TÜV UL	TÜV & UL FULL RANGE 'Y' TERM ONLY
1808	PY2 ⁽¹⁾	COG/NPO	4.7pF to 390pF	X1 NWGQ2, NWGQ8	IEC60384-14 EN60384-14 UL-60950-1, 2nd Ed CSA 60950-1-07 2nd Ed	TÜV UL	TÜV & UL FULL RANGE
1808	PY2 ⁽¹⁾	X7R	150pF to 1nF	X1 NWGQ2, NWGQ8	IEC60384-14 EN60384-14 UL-60950-1, 2nd Ed CSA 60950-1-07 2nd Ed	TÜV UL	TÜV & UL 1nF max. 'Y' TERM ONLY
1812	PY2 ⁽¹⁾	C0G/NP0	4.7pF to 390pF	X1 NWGQ2, NWGQ8	IEC60384-14 EN60384-14 UL-60950-1, 2nd Ed CSA 60950-1-07 2nd Ed	TÜV UL	TÜV & UL FULL RANGE
1812	PY2 ⁽¹⁾	X7R	150pF to 2.2nF	X1 IEC60384-14 EN60384-14 UL-60950-1, 2nd Ed CSA 60950-1-07 2nd Ed		TÜV UL	TÜV & UL 2.2nF max. 'Y' TERM ONLY
2211	SP ⁽²⁾	C0G/NP0	4.7pF to 1nF	Y2/X1 NWGQ2, NWGQ8			TÜV & UL FULL RANGE
2211	SP ⁽²⁾	X7R	100pF to 3.9nF	Y2/X1 NWGQ2, NWGQ8	IEC60384-14 EN60384-14 UL-60950-1, 2nd Ed CSA 60950-1-07 2nd Ed	TÜV UL	TÜV & UL FULL RANGE 'Y' & 'H' TERM ONLY
2215	SP ⁽²⁾	C0G/NP0	820pF to 1.0nF	Y2/X1 NWGQ2, NWGQ8	IEC60384-14 EN60384-14 UL-60950-1, 2nd Ed CSA 60950-1-07 2nd Ed	TÜV UL	TÜV & UL FULL RANGE
2215	SP ⁽²⁾	X7R	2.7nF to 3.9nF	Y2/X1 NWGQ2, NWGQ8	IEC60384-14 EN60384-14 UL-60950-1, 2nd Ed CSA 60950-1-07 2nd Ed		TÜV & UL FULL RANGE 'Y' & 'H' TERM ONLY
2220	B16 ⁽³⁾	X7R	150pF to 10nF	<u>Y2/X1</u> FOWX2, FOWX8			TÜV & UL FULL RANGE 'Y' & 'H' TERM ONLY
2220	B17 ⁽²⁾	X7R	150pF to 22nF	X2	IEC60384-14 EN60384-14	TÜV	TÜV ONLY 22nF max. 'Y' & 'H' TERM ONLY

Notes: Termination availability

(1) J & Y terminations only.

J, Y, A & H terminations available.
J, Y, A & H terminations available.

^{*}Un-marked capacitors with a dual ac/dc rating are also available as released in accordance with approval specifications. Suffix Code U17 applies.

J, Y, A & H terminations available on value \leq 5.6nF. Y & H terminations on 10nF.

PY2 Unmarked capacitors with a dual ac/dc rating are also available as released in accordance with approval specifications. Suffix Code SY2 applies.

SP Unmarked capacitors with a dual ac/dc rating are also available as released in accordance with approval specifications. Suffix Code SPU applies.

^{*}Un-marked capacitors with a dual ac/dc rating are also available as released in accordance with approval specifications. Suffix Code U16 applies.

250Vac Safety Certified AC Capacitors - Ordering Information

Ordering information - Safety Certified capacitors - Class SPU/SP ranges

180	B J	A25	0102	J	С	T	SP
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric codes	Packaging	Suffix code
1804 221 221!	(100% matte tin plating).	A25 = 250Vac (250Vac/2500Vdc for SPU only).	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following. Example: 0102 = 1.0nF	$<10pF$ B = ±0.10pF C = ±0.25pF D = ±0.50pF $\geqslant 10pF$ F = ±1% G = ±2% J = ±5% K = ±10% M = ±20%	C = COG/NPO X = X7R A = COG/NPO (1B/NPO) AEC-Q200 E = X7R (2B1) AEC-Q200	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays	SP = Surge Protection capacitors (marked and approved) SPU = Surge Protection capacitors (un-marked parts with a dual ac/ dc rating are in accordance with but not certified)

Ordering information - Safety Certified capacitors - Class PY2/SY2

O I de I II	ig information bare	cy ceremica ce	ipacitors class	/			
1808	J	A25	0102	J	X	T	PY2
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric codes	Packaging	Suffix code
1808 1812	J = Nickel barrier (100% matte tin plating). RoHS compliant. Lead free. Y = FlexiCap™ termination base with nickel barrier (100% matte tin plating). RoHS compliant.	A25 = 250Vac (250Vac/2500Vdc for SY2 only).	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following. Example: 0102 = 1.0nF	<10pF $B = \pm 0.10pF$ $C = \pm 0.25pF$ $D = \pm 0.50pF$ $\geqslant 10pF$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	C = COG/NP0 X = X7R A = COG/NP0 (1B/NP0) AEC-Q200 E = X7R (2B1) AEC-Q200	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays	PY2 = Safety tested Surge Protection capacitors (marked and approved) SY2 = Surge Protection capacitors (un-marked parts with a dual ac/dc rating are in accordance with but not certified)

Ordering information - Safety Certified capacitors - Class B16/B17 ranges

Orderi	Ordering information - Safety Certified Capacitors - Class B10/B17 ranges											
2220	J	A25	0102	J	X	T	B16					
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric codes	Packaging	Suffix code					
2220	J = Nickel barrier (100% matte tin plating). RoHS compliant. Lead free. Y = FlexiCap™ termination base with nickel barrier (100% matte tin plating). RoHS compliant. A = Nickel barrier (Tin/lead plating with min. 10% lead). Not RoHS compliant. H = FlexiCap™ termination base with nickel barrier (Tin/lead plating with minimum 10% lead). Not RoHS compliant.	A25 = 250Vac (250Vac/2500Vdc for U16 & U17 only).	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following. Example: 0102 = 1.0nF	$J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	X = X7R E = X7R (2B1) AEC-Q200	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays	B16 = Type A: X¹/Y² B17 = Type B: X² U16 = Surge protection *Un-marked Type A X1/Y2 capacitors (with a dual ac/dc rating are in accordance with but not certified) U17 = Surge protection *Un-marked Type B X2 capacitors (with a dual ac/dc rating are in accordance with but not certified)					

Non-Magnetic Capacitors - High Q, COG/NPO, X7R - 16V to 7.2kV

MLC capacitors with silver/palladium (Ag/Pd) terminations have often been used in medical applications where non-magnetic components are required, for example in MRI equipment - however, conventional nickel barrier terminations are not suitable due to their magnetic properties. In addition, RoHS requirement to use lead-free solders would cause an increase in soldering temperatures and cause solder leaching problems for the Ag/Pd termination. This has meant alternatives have had to be found and one solution is to use a copper barrier instead of a nickel barrier, with a tin finish on top. This non-magnetic termination is offered with selected non-magnetic COG/NPO, High Q and X7R dielectrics, providing a fully non-magnetic component (μ r = 1.0000).

To meet high temperature 260°C soldering reflow profiles as detailed in J-STD-020, C0G/NP0 dielectrics are supplied with FlexiCap $^{\text{TM}}$ or sintered termination whilst X7R dielectrics are supplied only with the FlexiCap $^{\text{TM}}$ termination.

Available in chip or ribbon leaded format for certain case sizes (consult sales office).

High Q, COG/NPO - minimum/maximum capacitance values

Chip Size	0402	0603	0505	0805	1206	1210	1808	1812	2220
Min Cap	0.1pF	0.1pF	0.2pF	0.2pF	0.5pF	0.3pF	1.0pF	1.0pF	2.0pF
50V _{63V}	22pF	100pF	220pF	470pF	1.5nF	-	-	-	-
100V	15pF	68pF	150pF	330pF	1.0nF	2.2nF	2.2nF	4.7nF	10nF
150V	10pF	47pF	100pF	220pF	680pF	1.5nF	1.5nF	3.3nF	6.8nF
200V _{250V}	6.8pF	33pF	56pF	150pF	470pF	1.0nF	1.0nF	2.2nF	4.7nF
300V	-	27pF	47pF	120pF	390pF	820pF	820pF	1.8nF	3.9nF
500V				68pF	270pF	680pF	680pF	1.5nF	3.3nF
630V	Min Capacitance Tolerance			-	150pF	390pF	390pF	1.0nF	2.2nF
1000V		±0.05pF (<4.7pF) 0.1pF (≥4.7pF & <10pF) ±1% (≥10pF)		-	82pF	220pF	220pF	680pF	1.5nF
2000V	0.1			-	18pF	68pF	68pF	150pF	470pF
3000V				-	-	-	-	68pF	150pF

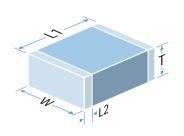
X7R - minimum/maximum capacitance values

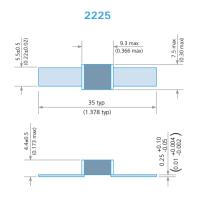
Chip Size	0402	0603	0805	1206	1210	1808	1812	2220
Min Cap	47pF	100pF	330pF	680pF	1.5nF	2.2nF	3.3nF	6.8nF
16V	10nF	100nF	330nF	1.0μF	1.5μF	1.5μF	3.3µF	5.6µF
25V	6.8nF	68nF	220nF	820nF	1.2µF	1.2µF	2.2µF	4.7µF
50V _{63V}	4.7nF	47nF	150nF	470nF	1.0μF	680nF	1.5µF	3.3µF
100V	1.5nF	10nF	47nF	150nF	470nF	330nF	1.0μF	1.5µF
^{200V} 250V	680pF	5.6nF	27nF	100nF	220nF	180nF	470nF	1.0µF
500V	-	1.5nF	8.2nF	33nF	100nF	100nF	270nF	560nF
630V	Min Capacitance Tolerance ±5%		4.7nF	10nF	27nF	33nF	150nF	330nF
1000V			3.3nF	4.7nF	15nF	18nF	56nF	120nF
1200V			-	3.3nF	10nF	10nF	33nF	82nF
1500V			-	2.7nF	6.8nF	6.8nF	22nF	47nF
2000V			-	2.2nF	4.7nF	4.7nF	10nF	27nF

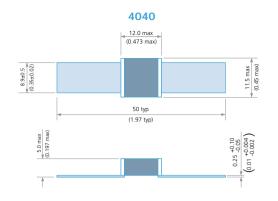
High Q, COG/NPO High Power RF capacitors - minimum/maximum capacitance values

A range of ultra-low loss High Q ceramic capacitors with C0G/NP0 characteristics suitable for high power applications where minimal power loss and very low self heating is demanded.

Common applications include MRI body coils and wireless charging systems operating in the kHz and MHz frequencies.


Available in chip or ribbon leaded format.


Chip size	Case size	11 - 1111	Case size	25 - 2225	Case size 40 - 4040		
	Min.	Max.	Min.	Max.	Min.	Max.	
100V	1.8nF	2.2nF					
150V	1.2nF	1.5nF					
200V	5.7nF	10nF	6.2nF	10nF	16nF	27nF	
250V	820pF	1.0nF					
500V	470pF	680pF	5.1nF	5.6nF	13nF	15nF	
630V	270pF	390pF	3.6nF	4.7nF	11nF	12nF	
1kV	82pF	220pF	1.1nF	3.3nF	5.6nF	10nF	
2kV	0.3pF	68pF	510pF	1.0nF	1.6nF	5.1nF	
3kV			110pF	470pF	910pF	1.5nF	
3.6kV			1pF	47*/100pF	-	-	
4kV			*47pF max. for dual rated		620pF	820pF	
5kV				c 30MHz	360pF	560pF	
6kV				for dual rated	160pF	330pF	
7.0/7.2kV			@5kVac	JUIMZ.	1pF	56**/150pF	


Non-Magnetic Capacitors - High Q, COG/NPO, X7R - 16V to 7.2kV

Surface Mount See page 20 for dimensions

Ribbon Leaded Silver plated copper ribbon attached with HMP solder - (MP greater than 260°C)

Ordering information - Syfer Non-Magnetic capacitors

1206	2	500	0223	J	Q	T	-	-
4040	2	7KO	0470	G	Q	В	-	AF9
2225	В	3K0	6P80	G	Q	В	R	W221
Chip size	Termination or Coating (Ribbon Leaded)	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric	Packing	Lead Options	Suffix code
0402* 0603 0505 0805 1206 1111 1210 1808 1812 2220 2225† 4040†	2 = Sintered silver with copper barrier* 3 = FlexiCap™ with copper barrier. 4 = Sintered silver with copper barrier* 5 = FlexiCap™ base with copper barrier. Ribbon Leaded B = Uncoated V = Coated with modified silicone laquer	50 = 50V 100 = 100V 1K0 = 1kV 2K0 = 2kV 3K0 = 3kV 4K0 = 4kV 5K0 = 5kV 6K0 = 6kV 7K0 = 7kV	<10pF Insert a P for the decimal point, eg 2P20 = 2.2pF. >10pF. 1st digit is 0. 2nd and 3rd digits are significant figures of capacitance code. The 4th digit is number of 0's following eg. 0470 = 47pF 0512 = 5100pF Values <1pF in 0.1pF steps, above this values are E24 series	$<4.7pF$ H = ±0.05pF B = ±0.1pF C = ±0.25pF D = ±0.5pF ≥4.7pF $\sim <10pF$ B = ±0.1pF C = ±0.25pF D = ±0.5pF $= ±0.5pF$ ≥10pF F = ±1% G = ±2% J = ±5% K = ±10% M = ±20%	C = COG/ NPO (1B) Q = High Q X = X7R (2R1)	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays	R = Ribbon leaded Blank = SM chip	W221 = Leaded W211 = Leaded marked **AF9 = SM standard chip **AF9LM = SM marked standard chip

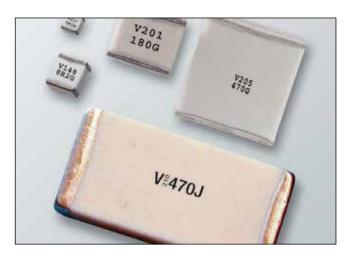
Note: *0402 - COG/NP0 and High Q only. †Ribbon Leads available. **AF9 and AF9LM suffix code only available in 1111, 2225 and 4040 chip sizes.

Ordering information - Voltronics Non-Magnetic capacitors

				P40.1010		
11	470	J	1000	VV	F	R
Chip size	Capacitance	Tolerance	Voltage	Termination	Material	Lead/ Packaging
4 0402* 5 0505 6 0603* 8 0805* 11 1111† 12 1206* 13 1210* 18 1812* 22 2220* 25 2225† 38 3838† 40 4040†	OR1 0.1pF 100 10pF 101 100pF 102 1000pF	A ±0.05pF B ±0.1pF C ±0.25pF D ±0.5pF F ±1% G ±2% J ±5% K ±10% M ±20%	50 = 50V 100 = 100V 1000 =1000V	W = Ag/Cu/Sn S = Pd/Ag M = Poly/Cu/Sn 2 = Ag/Cu/Sn - (Q dielectric only) 3 = Poly/Cu/Sn - (X dielectric only) B = Silver - (Q ribbon only) V = Silver, laquer Coated - (Q ribbon only)	Q = High Q 0±30ppm/°C X = X7R (2R1)	R = Ribbon T* = Tape & Reel B* = Bulk

Note: *Q and X dielectric only. †Ribbon Leads available.

Non-Magnetic Capacitors, High Power RF - Porcelain High Q


Made from highly stable, low loss dielectric formulations, these traditional porcelain MLCs are known for their high RF power handling capability. Available in all industry common case sizes. The special silver-palladium termination and the proprietary ceramic formulations guarantee consistent non-magnetic performance. All MLCs in these series are RoHS compliant. Chips are available either with standard termination or can be fitted with ribbon leads, depending on your application.

Description

- Porcelain Capacitors Zero TC Low Noise Low ESR, High Q
- High Self-resonance Established Reliability
- Capacitance range 0.1pF to 5.1nF

Functional Applications

- Impedance Matching DC Blocking Bypass Coupling
- Tuning and Feedback

High Power RF capacitors - F & H materials - Minimum/maximum capacitance values - see ordering information

Chip Size	Case size 5 0505		Case size 11 1111		Case size 25 2225		Case size 38 3838	
	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
50V	-	-	680pF	1nF	-	-	-	-
100V	-	-	510pF	620pF	-	-	-	-
200V	36pF	100pF	220pF	470pF	-	-	-	-
250V	0.1pF	33pF	-	-	-	-	-	-
300V	-	-	-	-	2.2nF	2.7nF	-	-
500V	-	-	110pF	200pF	1.5nF	1.8nF	2.7nF	5.1nF
1kV	-	-	0.3pF	100pF	510pF	1.2nF	750pF	2.2nF
1.5kV	-	-	-	-	300pF	470pF	-	-
2kV	-	-	-	-	-	-	-	-
2.5kV	-	-	-	-	0.3pF	270pF	430pF	680pF
3.6kV	-	-	-	-	-	-	110pF	390pF
7.2kV	-	-	-	-	-	-	0.3pF	100pF

Note: Special capacitance values available upon request.

Ordering information - Non-Magnetic capacitors

11	470	J	1000	W	F	R
Chip size	Capacitance	Tolerance	Voltage	Termination	Material	Lead
5 0505 11 1111† 25 2225† 38 3838†	OR1 0.1pF 100 10pF 101 100pF 102 1000pF	A ±0.05pF B ±0.1pF C ±0.25pF D ±0.5pF F ±1% G ±2% J ±5% K ±10%	50 50V 100 100V 1000 1000V	W Ag/Cu/Sn S Pd/Ag M Poly/Cu/Sn	H AH +90±20ppm/°C F CF 0±15ppm/°C	B = Chip R =Ribbon

Note: †Available in chip or ribbon leaded format.

Reeled Quantities

Chip Size	0402	0505	0603	0805	1206	1111 1210	1808	1812	2220	2225
7" Reel	10000	2500	4000	3000	2500	1000 ₂₀₀₀	1500	500	500	500
13" Reel		13" reel quantities available on request						2000	2000	2000

Note: Other capacitance values may become available, please contact the Sales Office if you need values other than those shown in the above tables. For dimensions and soldering information, please go to our website www.knowlescapacitors.com.

Non-Magnetic Capacitors - High Q, X7R

Typical performance data - chip size 0805 High Q Typical performance data - chip size 1111 High Q **ESR** vs Frequency **ESR** vs Frequency ESR (Ohms) ESR (Ohms) 100pF 10pF 100pF 0.01 0.01 100 1000 100 1000 Frequency (MHz) Frequency (MHz) Q vs Capacitance Q vs Capacitance 100000 100000 10000 10000 1000 1000 O O 100 100 10 10 150 MHz 150 MHz 0.1 10 100 1000 0.1 10 100 1000 Capacitance (pF) Capacitance (pF) **Resonant Frequency vs Capacitance Resonant Frequency vs Capacitance** 100000 100000 Frequency (Mhz) 0001 0001 Frequency (Mhz) 0001 0001 Series Parallel Parallel 100 100 0.1 10 100 1000 0.1 100 1000 Capacitance (pF) Capacitance (pF) **Typical ESR vs Frequency** 0.14 4040 56pF **ESR** Measurement 4040 18pF ESR (mohms) 0.10 All ESR figures are measured using a VNA and 2225 2.2nF 2m copper resonant tube and extrapolating to 0.08 30MHz by ratio. Measured data can be supplied 2225 39pF on request. Measurement of ESR can vary 0.06 2225 10pF with test method and components should only be compared when tested back-to-back on the - 4040 5.1nF 0.04

www.knowlescapacitors.com

140

120

100

0.02

20

40

60

Frequency (MHz)

same equipment under controlled conditions.

115Vac 400Hz Capacitors - COG/NPO, X7R

115Vac 400Hz capacitors for aerospace applications

Knowles has conducted reliability testing on standard surface mount ceramic capacitors in order to ensure their performance at 115Vac 400Hz and the associated voltage and frequency transients required by MIL-STD-704. Self heating will occur due to losses in the capacitor but has been measured at less than 25°C rise with neutral mounting conditions at room temperature.

115Vac 400Hz Capacitors - minimum/maximum capacitance values

	0805	1206	1210	1808	1812	2220
Dielectric			Maximum capa	acitance values		
COG/NPO	1pF - 330pF	1pF - 1.5nF	3.9pF - 3.9nF	4.7pF - 3.9nF	10pF - 10nF	10pF - 15nF
X7R	100pF - 4.7nF	100pF - 18nF	100pF - 39nF	100pF - 39nF	150pF - 82nF	220pF - 100nF

Ordering information - 115Vac 400Hz Capacitors

1206	Υ	A12	0103	J	X	Т
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric codes	Packaging
0805 1206 1210 1808 1812 2220	termination base with nickel barrier (100% matte tin plating). RoHS compliant. H = FlexiCap™	A12 = 115Vac	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following. Example: 0103 = 10nF	<4.7pF H = ±0.05pF B = ±0.10pF C = ±0.25pF D = ±0.50pF >4.7pF & <10pF B = ±0.10pF C = ±0.25pF D = ±0.50pF >10pF F = ±1% G = ±2% J = ±5% K = ±10% M = ±20%	C = COG/NPO X = X7R	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays

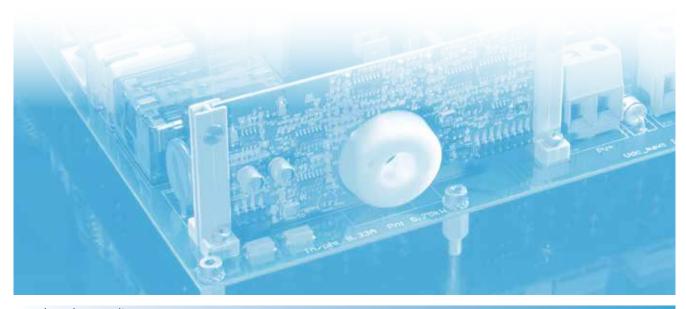
DWV Chip range - COG/NPO, X7R

High Dielectric Withstand Voltage capacitors (DWV range)

The DWV range is specifically designed for use in applications where a high Dielectric Withstand Voltage (DWV) is required.

These parts have a continuous rated voltage of 500Vdc minimum and are 100% DWV tested at the specified voltages to ensure Flashover (arcing) across the surface does not occur.

- High dielectric withstand voltages (DWV) of 1.5kV and 2.5kV
- These ratings are based on an application of the DWV voltage for a period of up to 60 seconds (where the charging current is limited to 50mA)
- Case sizes: 1206, 1210, 1808, 1812, 2220 and 2225
- COG/NPO and X7R dielectrics
- Capacitance values from 4.7pF to 120nF



DWV Capacitors - minimum/maximum capacitance range

		1206	1210	1808	1812	2220	2225
1 ELV	COG/NPO	4.7pF - 330pF	4.7pF - 1nF	4.7pF - 1.2nF	10pF - 2.2nF	100pF - 4.7nF	100pF - 5.6nF
1.5kV	X7R	4.7pF - 3 . 9nF	4.7pF - 10nF	4.7pF - 12nF	10pF - 33nF	100pF - 100nF	100pF - 120nF
2 ELV	COG/NPO	4.7pF - 220pF	4.7pF - 560pF	4.7pF - 1nF	10pF - 1.5nF	100pF - 3.3nF	100pF - 3.9nF
2.5kV	X7R	4.7pF - 1nF	4.7pF - 2 . 2nF	4.7pF - 2 .7 nF	10pF - 5.6nF	10pF - 15nF	100pF - 18nF

Ordering information - DWV Capacitors

1812	J	1K5	0820	K	С	T	DWV
Chip size	Termination	Dielectric Withstand Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric codes	Packaging	Suffix code
1206 1210 1808 1812 2220 2225	Y = FlexiCap™ termination base with nickel barrier (100% matte tin plating). RoHS compliant. J = Nickel barrier (100% matte tin plating). RoHS compliant. Lead free.	1K5 = 1.5kV 2K5 = 2.5kV	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following. Example: 0820 = 82pF	$<10 pF \\ B = \pm 0.10 pF \\ C = \pm 0.25 pF \\ D = \pm 0.50 pF \\ \geqslant 10 pF \\ F = \pm 1\% \\ G = \pm 2\% \\ \geqslant 10 pF \\ J = \pm 5\% \\ K = \pm 10\% \\ M = \pm 20\% \\$	C = COG/NPO X = X7R	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays	Dielectric Withstand Voltage

High Temperature Caps - up to 150°C X8R, Commercial, AEC-Q200

The X8R dielectric will operate from -55°C to +150°C, with a maximum capacitance change ±15 % (without applied voltage).

The devices are available in sizes 0805 to 2225, with voltage ranges from 25V to 3kV and capacitance values from 100pF to 2.2μ F.

The capacitors have been developed by Knowles to meet demand from various applications in the automotive and industrial markets and in other electronic equipment exposed to high temperatures. The increased use of electronics in automotive "under the hood" applications has created demand for this product range.

The X8R range incorporates a specially formulated termination with a nickel barrier finish that has been designed to enhance the mechanical performance of these SMD chip capacitors in harsh environments typically present in automotive applications.

Insulation Resistance (IR)

100G Ω or 1000secs (whichever is the less).

Dielectric Withstand Voltage (DWV)

2.5 x rated voltage for 5±1 seconds, 50mA charging current maximum.

Ageing Rate

1% per decade (typical)

Capacitance Range

100pF to 2.2µF (0805 to 2225)

Temperature Coefficient of Capacitance (TCC)

 $\pm 15\%$ from -55°C to +150°C

Dissipation Factor (DF)

≤ 0.025

Termination

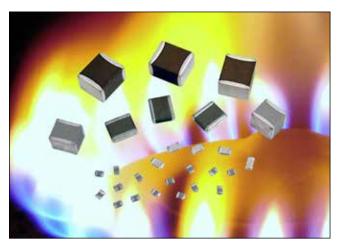
Nickel Barrier Tin Plated

X8R High Temperature Capacitors - minimum/maximum cap. values according to the rated d.c. voltage

	0805	1206	1210	1808	1812	2220	2225	4540*	7565*
Min cap	100pF	100pF	100pF	100pF	150pF	220pF	330pF	1nF	2.2nF
Min cap	220pF	220pF	220pF	220pF	220pF	220pF	330pF	5.6 µF	15µF
50V	47nF	150nF	330nF	330nF	680nF	1.2μF	2.2µF	4.7µF	12µF
100V	33nF	100nF	220nF	220nF	470nF	1.0μF	1.5µF	3.9µF	10μF
200/250V	15nF	68nF	150nF	150nF	330nF	680nF	1.0μF	2.7µF	6.9µF
500V	4.7nF	22nF	47nF	47nF	120nF	330nF	470nF	1.2µF	3.2µF
630V	2.2nF	10nF	33nF	33nF	68nF	180nF	220nF	-	-
1kV	1.5nF	3.3nF	6.8nF	6.8nF	27nF	68nF	82nF	-	-
1.2kV		2.2nF	5.6nF	5.6nF	15nF	47nF	56nF	-	-
1.5kV		1.5nF	3.3nF	3.3nF	10nF	27nF	33nF	-	
2kV		680pF	1.5nF	1.5nF	5.6nF	15nF	22nF	-	
2.5kV				1.2nF	3.3nF	10nF	12nF	-	
3kV				820pF	2.7nF	5.6nF	6.8nF	-	-

Notes: = X8R ranges in yellow available as qualified AEC-Q200. *Only available as Novacap parts, Non-RoHS compliant.

Ordering information - Syfer X8R High Temperature Capacitors


120	6 Y	100	0473	K	N	T
Chip si	ze Termination	Voltage d.c.	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric codes	Packaging
0805 1206 1210 1808 1812 2220 2225	termination base with nickel barrier (100% matte tin plating).	050 = 50V 100 = 100V 200 = 200V 250 = 250V 500 = 500V 630 = 630V 1K0 = 1kV 1K2 = 1.2kV 1K5 = 1.5kV 2K0 = 2kV 2K5 = 2.5kV 3K0 = 3kV	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following. Example: 0473 = 47000pF = 47nF	$J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	N = X8R T = X8R AEC-Q200 RoHS compliant.	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays

Ordering information - Novacap High Temperature Capacitors

4540	S	125	K	501	N	T	M
Chip size	Dielectric codes	Capacitance in picofarads (pF)	Capacitance tolerance code	Voltage code	Termination codes	Packaging	Marking
0805 1206 1210 1812 1825 2225 4540 7565	S = X8R High Temp. (up to 150°C) Non-RoHS.	Value in Picofarads. Two significant figures, followed by number of zeros: 125 = 1.2nF	$J = \pm 5\%$ (X8R) $K = \pm 10\%$ (Class II) $M = \pm 20\%$ (Class II)	Two significant figures, followed by number of zeros: 250 = 25 Volts 500 = 50 Volts 101 = 100 Volts 251 = 250 Volts 501 = 500 Volts	P = Palladium Silver PR = Palladium Silver* K = Solderable Palladium Silver* N = Nickel Barrier* 100% tin Y = Nickel Barrier* 90% tin, 10% lead C = FlexiCap™/Nickel Barrier* 100% tin D = FlexiCap™/Nickel Barrier* 90% tin, 10% lead S = Solderable Silver* *Indicates RoHS terminations	None = Bulk T = Tape & Reel W = Waffle Pack	None = Unmarked M = Marked

High Temperature Caps - 160°C, 200°C

A range of chip capacitors, available in sizes 0805 to 7565, designed to operate from -55°C to 160°C, (Class II Dielectric) and from -55°C to 200°C (C0G/NP0 and Class II Dielectrics). Voltage ratings of 25V to 4kV.

Maximum capacitance values - 160°C COG (F)/Class II (G) and 200°C COG/NPO (D)/Class II (E) Dielectrics

Size	0805	1206	1210	1515	1808	1812	1825	2225	3530	4540	6560	7565
Tmax	0.054 1.37	0.064 1.63	0.065 1.65	0.130 3.30	0.065 1.65	0.065 1.65	0.080 2.03	0.080 2.03	0.250 6.35	0.300 7.62	0.300 7.62	0.300 7.62

Maximum capacitance values - COG/NPO - 160°C (F) and 200°C (D)

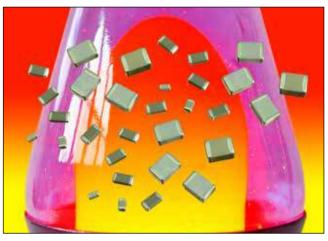
Min cap.	0R5	1R0	5R0	5R0	120	220	330	470	221	390	560	101
25V	2.7nF	5.6nF	12nF	22nF	12nF	22nF	56nF	56nF	100nF	180nF	330nF	390nF
50V	1.8nF	3.9nF	8.2nF	18nF	8.2nF	15nF	39nF	47nF	82nF	150nF	270nF	330nF
100V	680pF	1.8nF	3.3nF	10nF	3.3nF	8.2nF	15nF	18nF	56nF	100nF	220nF	270nF
250V	180pF	1.0nF	2.2nF	3.9nF	2.2nF	5.6nF	12nF	18nF	33nF	56nF	120nF	150nF
500V	100pF	390pF	820pF	2.7nF	1.0nF	2.2nF	3.9nF	5.6nF	12nF	27nF	56nF	68nF
1kV	47pF	100pF	220pF	820pF	220pF	560pF	820pF	1.0nF	5.6nF	15nF	33nF	39nF
2kV	•	27pF	56pF	180pF	56pF	120pF	180pF	270pF	1.5nF	3.3nF	8.2nF	10nF
3kV	•	•	•	82pF	22pF	56pF	82pF	100pF	560pF	1.5nF	3.3nF	3.9nF
4kV	•	•	•	47pF	12pF	27pF	33pF	47pF	330pF	82 0 pF	1.8nF	2.2nF

Maximum capacitance values - Class II - 160°C (G) and 200°C (E)

Min cap.	121	121	121	151	151	151	471	471	102	102	222	222
25V	82nF	220nF	390nF	820nF	330nF	680nF	1.5µF	1.8µF	3.9µF	5.6µF	15µF	18µF
50V	47nF	120nF	220nF	680nF	270nF	470nF	1.0µF	1.2µF	2.7µF	4.7µF	12µF	15µF
100V	18nF	47nF	100nF	270nF	82nF	150nF	470nF	470nF	2.2µF	3.3µF	8.2µF	12µF
250V	4.7nF	10nF	27nF	68nF	22nF	47nF	120nF	150nF	560nF	1.2µF	2.7µF	3.9µF
500V	1.0nF	2.2nF	5. 6nF	18nF	5.6nF	10nF	27nF	33nF	120nF	330nF	680nF	820nF
1kV	180pF	390pF	820pF	2.7nF	820pF	1.5nF	4.7nF	5.6nF	27nF	68nF	150nF	220nF
2kV	•	•	150pF	560pF	•	220pF	560pF	680pF	6.8nF	18nF	39nF	47nF
3kV	•	•	•	•	•	•	•	•	2.7nF	6.8nF	15nF	18nF
4kV	•	•	•	•	•	•	•	•	1.2nF	2.7nF	5.6nF	8.2nF

Ordering information - High Temperature Capacitors

1206	G	224	K	250	N	X050	H	T	M
Chip size	Dielectric codes	Capacitance in picofarads (pF)	Capacitance tolerance code	Voltage code	Termination codes	Thickness options	High Reliability Testing	Packaging	Marking
0805 1206 1210 1515 1808 1812 1825 2225 3530 4540 6560 7565	F = COG/NPO High Temp. (up to 160°C) D = COG/NPO High Temp. (up to 200°C) E = Class II High Temp. (up to 200°C) G = Class II High Temp. (up to 160°C)	Value in Picofarads. Two significant figures, by number of zeros: 224 = 220nF (220,000pF)	$\begin{split} F &= \pm 1\% \; (\text{COG/NP0}) \\ G &= \pm 2\% \; (\text{COG/NP0}) \\ J &= \pm 5\% \; (\text{X8R}) \\ K &= \pm 10\% \; (\text{Class II}) \\ M &= \pm 20\% \; (\text{Class II}) \end{split}$	Two significant figures, followed by number of zeros: 250 = 25 Volts	P = Palladium Silver PR = Palladium Silver* K = Solderable Palladium Silver* N = Nickel Barrier* 100% tin Y = Nickel Barrier* 90% tin, 10% lead C = FlexiCap™/Nickel Barrier* 90% tin, 10% lead S = Solderable Silver* *Indicates RoHS terminations Note: Nickel barrier not available in 200°C dielectric	Blank = Standard thickness "X" = Special thickness, specified in inches: X050 = 0.050"	High Temperature Screening	None = Bulk T = Tape & Reel W = Waffle Pack	None = Unmarked M = Marked *Marking not available on sizes <0603


High Temperature HiT range - 200°C - COG/NPO & X7R

The HiT range of multilayer ceramic capacitors is suitable for a variety of high temperature applications including: oil exploration, geothermal, military, automotive under-hood and avionics.

This range is manufactured to exacting standards using our unique screen printing process. This provides a high quality component suitable for demanding applications.

- 200°C operating temperature
- 0603 to 2220 chip sizes
- C0G/NP0 and X7R dielectric options
- Capacitance range C0G/NP0 from 4.7pF up to 47nF
- Capacitance range X7R from 100pF up to 4.7μF
- Voltage ratings from 10V to 630V
- RoHS compliant / Pb Free
- Sn over Ni termination
- Sample kits available

Insulation Resistance (IR) 25°C >100G Ω or 1000secs (whichever is the less). 200°C >1G Ω or 10secs (whichever is the less).

Temperature Coefficient of Capacitance (TCC) COG/NPO 30ppm/°C to +125°C. X7R ±15% to +125°C

Ageing Rate

COG/NPO Zero. X7R X7R typically less than 2% per time decade.

Maximum capacitance values - High Temperature HiT range - 200°C COG/NPO & X7R

							Chip	size						
Rated	060)3	080	05	12	06	12	10	180	80	18	12	22	20
Voltage	COG/NPO	X7R												
Min Cap	-	100pF	4.7pF	100pF	10pF	100pF	22pF	100pF	22pF	100pF	47pF	150pF	68pF	220pF
10V	-	100nF	1.8nF	220nF	3.9nF	820nF	8.2nF	1.2μF	8.2nF	1.2μF	15nF	2.2uF	47nF	4.7µF
16V	-	100nF	1.8nF	220nF	3.9nF	820nF	8.2nF	1.2μF	8.2nF	1.2μF	15nF	2.2uF	47nF	4.7µF
25V	-	47nF	1.8nF	220nF	3.9nF	820nF	8.2nF	1.2μF	8.2nF	1.2μF	15nF	2.2uF	47nF	4.7µF
50V	-	15nF	1.8nF	100nF	3.9nF	270nF	8.2nF	680nF	8.2nF	560nF	15nF	1.5uF	47nF	2.2µF
100V	-	8.2nF	1.5nF	33nF	3.3nF	100nF	5.6nF	270nF	6.8nF	180nF	12nF	560nF	39nF	1.0µF
200V	-	1.2nF	820pF	6.8nF	1.8nF	27nF	3.9nF	68nF	3.9nF	47nF	10nF	82nF	22nF	120nF
250V	-	820pF	470pF	3.9nF	1.0nF	15nF	2.2nF	47nF	2.2nF	27nF	5.6nF	56nF	12nF	82nF
500V	-	270pF	220pF	1.5nF	820pF	3.9nF	1.5nF	12nF	1.8nF	12nF	4.7nF	18nF	10nF	68nF
630V	-	-	68pF	-	330pF	-	820pF	-	820pF	-	2.7nF	-	6.8nF	-

Note: Other capacitance values may become available, please contact the Sales Office if you need values other than those shown in the above table. For dimensions and soldering information, please go to our website www.knowlescapacitors.com

Ordering information - Novacap Brand - High Temperature HiT range

1206	RE	331	J	J	501	N	H	T
Case size	Dielectric	Capacitance in picofarads (pF)	Capacitance	e tolerance	Voltage	Termination	Screening	Packaging
0603 0805 1206 1210 1808 1812 2220	RD = COG/NP0 (200°C) RE = X7R (200°C)	First and Second digits are significant figures of capacitance code. The fourth digit is number of 0's following. Example: 103 = 10000pF R = decimal	COG/NPO F = ±1% G = ±2% J = ±5% K = ±10%	X7R $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	100 = 10V 160 = 16V 250 = 25V 500 = 50V 101 = 100V 201 = 200V 251 = 250V 501 = 500V 631 = 630V	N = Nickel barrier with 100% matte tin plating. RoHS compliant. Lead free.	H = High Temp Screening - if required	T = 178mm (7") reel 330mm (13") reel None = Bulk pack - tubs

Ordering information - Syfer Brand - High Temperature HiT range

1206	J	1K0	0103	M		X	T	H20
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance	tolerance	Dielectric	Packaging	Suffix Code
0603 0805 1206 1210 1808 1812 2220	J = Nickel barrier with 100% matte tin plating. RoHS compliant. Lead free.	010 = 10V 016 = 16V 025 = 25V 050 = 50V 063 = 63V 100 = 100V 200 = 200V 250 = 250V 500 = 500V 630 = 630V	≥1.0pF & <10pF Insert a P for the decimal point as the second character. e.g., 8P20 = 8.2pF ≥10pF First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is the number of zeros following. e.g., 0101 = 100pF	COG/NPO F = ±1% G = ±2% J = ±5% K = ±10%	X7R $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	G = COG/ NPO (BME) X = X7R	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs	H20 HIT range

Capacitor Assemblies - ST, SM - COG/NPO, X7R

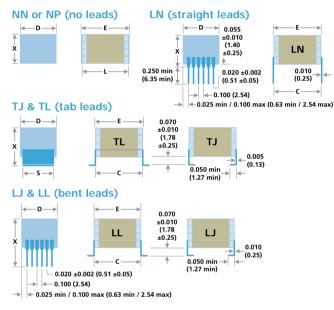
Our complete testing facility is available for any additional military testing requirements. Options available include thru-hole and surface mount lead styles, to make them suitable for mounting on ceramic substrates or epoxy PCBs.

Consult the Sales Office if your specific requirements exceed our catalogue maximums (size, cap. value and voltage).

These ranges of both High Capacitance and High Voltage MLC assemblies are available in COG/NPO and X7R dielectrics.

Low ESR and Low ESL are inherent in the design giving the assemblies a high capability up to 1MHz and offer far superior performance than either Aluminium or Tantalum electrolytic capacitors.

They are designed for use in high power or high frequency applications such as switched mode power supplies, DC-DC converters, high capacitance discharge circuits and high temperature filtering/decoupling. They can be made with up to five same size chips with various lead configurations to safeguard against thermal and mechanical stresses.


The commercial 'ST' series provide the highest capacitance available and are 100% tested for Dielectric Withstanding Voltage, Insulation Resistance, Capacitance and Dissipation Factor.

Maximum stack height, X dimension - inches/mm

No. of chips	Chip size	Style NN, NP	Style TJ & TL	Style LN, LJ & LL
1	1812	0.100/2.54	0.180/4.57	N/A
	1825	0.100/2.54	0.180/4.57	0.180/4.57
	2225	0.120/3.05	0.200/5.08	0.200/5.08
	>2225	N/A	0.200/5.08	0.200/5.08
2	1812	0.200/5.08	0.280/7.11	N/A
	1825	0.200/5.08	0.280/7.11	0.280/7.11
	2225	0.240/6.10	0.320/8.13	0.320/8.13
	>2225	N/A	0.320/8.13	0.320/8.13
3	812	0.300/7.62	0.380/9.65	N/A
	1825	0.300/7.62	0.380/9.65	0.380/9.65
	2225	0.360/9.14	0.440/11.2	0.440/11.20
	>2225	N/A	0.440/11.2	0.440/11.20
4	1812	0.400/10.20	0.480/12.2	N/A
	1825	0.400/10.20	0.480/12.2	0.480/12.20
	2225	0.480/12.20	0.560/14.2	0.560/14.20
	>2225	N/A	0.560/14.2	0.560/14.20
5	1812	0.520/13.20	0.600/15.2	N/A
	1825	0.520/13.20	0.600/15.2	0.600/15.2
	2225	0.635/16.10	0.715/18.2	0.715/18.2
	>2225	N/A	0.715/18.2	0.715/18.2

In contrast, the High Reliability 'SM' series is designed and tested for military and industrial applications and tested as per of MIL-PRF-49470 (DSCC 87106), Group A.

Dimensions - inches/mm

Size	1812	1825	2225	3640	4540	5550	7565
C*	0.210/	0.210/	0.250/	0.400/	0.480/	0.580/	0.780/
	5.33	5.33	6.35	10.20	12.20	14.70	19.80
D*	0.125/	0.250/	0.250/	0.400/	0.400/	0.500/	0.650**/
	3.18	6.35	6.35	10.20	10.20	12.70	16.50
E max	0.260/	0.260/	0.300/	0.430/	0.530/	0.630/	0.830/
	6.60	6.60	7.62	10.90	13.50	16.00	21.10
L nom	0.180/	0.180/	0.220/	0.360/	0.450/	0.550/	0.750/
	4.57	4.57	5.59	9.14	11.40	14.00	19.10
Leads per side	N/A	3	3	4	4	5	6

Notes: 1) *C & D inches ±0.025:/mm ±0.64: 2) **±0.035/0.89

Ordering Information - ST & SM Capacitor Assemblies

ST	3640	В	474	M	101	LJ	X	W	-5	R
Style	Size	Dielectric	Capacitance	Tolerance	Voltage- VDCW	Lead style	Thickness option	Packing	No. Chips	RoHS
ST = Commercial SM = High Reliability	See Chart	N = COG/NP0 B = X7R	Value in Picofarads. Two significant figures, followed by number of zeros: 825 = 8,200,000pF (8.2µF)	$F = \pm 1\%* \\ B = \pm 2\%* \\ H = \pm 3\%* \\ J = \pm 5\% \\ K = \pm 10\% \\ M = \pm 20\% \\ Z = +80 -20\% \\ P = +100 -0\% \\ *COG/NPO only$	Two significant figures, followed by number of zeros: 101 = 100V	LN = Straight* LL = L Lead* LJ = J Lead* TL = L Tab TJ = J tab NN = Nickel NP = Pd/Ag *Not 1812	Specify standoff dimension if less than max.	W = Waffle T = Tape & Reel* *Consult the sales office	1 to 5	≥250V RoHS

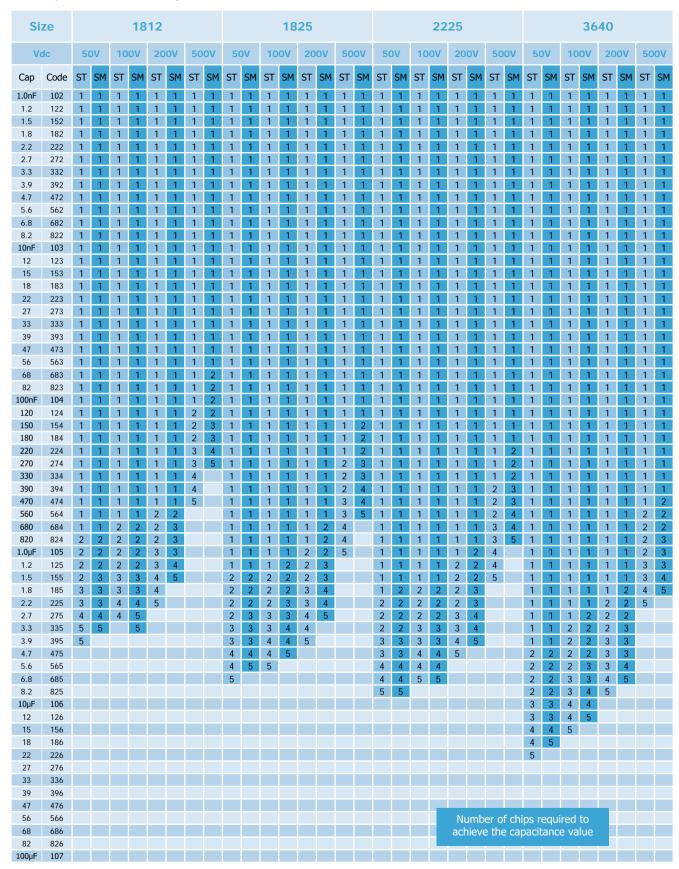
Capacitor Assemblies - ST, SM - COG/NPO

COG/NPO Capacitance and Voltage Selection

Si	ze				18	12							18	25							22	25							36	40			
Rated	Voltage	50)V	10)0V	20	0V	50	0V	50)V	10	0V	20)0V	50	0V	5	0V	10)0V	20	0V	50	0V	50)V	10	0V	20	0V	50	0V
Сар	Code	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM
10pF 12	100 120	1	1	1	1	1	1	1	1																								
15	150	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1								er o								
18 22	180 220	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1						acı	licve	e unc	z Ca _l	Jaci	Laric	C Va	luc			
27 33	270 330	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1								
39	390	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
47 56	470 560	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
68	680	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
82 100pF	820 101	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
120	121	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
150 180	151 181	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
220	221	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
270 330	271 331	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
390 470	391 471	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
560	561	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
680 820	681 821	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1.0nF	102	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1.2	122 152	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1.8	182	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2.2	222 272	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3.3	332	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3.9 4.7	392 472	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5.6 6.8	562 682	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
8.2	822	1	1	1	1	1	1	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10nF 12	103 123	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
15	153	1	1	1	1	1	1	1	3	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1
18 22	183 223	1	1	1	1	1	1	3	4 5	1	1	1	1	1	1	1 2	2	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1
27	273	1	1	1	1	2	2	4		1	1	1	1	1	1	2	3	1	1	1	1	1	1	2	3	1	1	1	1	1	1	1	1
33 39	333 393	1	1	2	1	2	2	4 5		1	1	1	1	1	1	3	4 5	1	1	1	1	1	1	2	3	1	1	1	1	1	1	1	2
47	473	2	2	2	2	2	3			1	1	1	1	1	1	3		1	1	1	1	1	1	3	4	1	1	1	1	1	1	2	2
56 68	563 683	3	3	3	3	3	3			1	1	1 2	2	2	2	4		1	1	1	1	1 2	2	3	5	1	1	1	1	1	1	2	3
82	823	3	3	3	3	4	4			2	2	2	2	2	2	5		1	1	2	2	2	2	5		1	1	1	1	1	1	2	3
100nF 120	104 124	3	3	4 5	_	5	5			2	2	2	2	2	3			2	2	2	2	2	2			1	1	1	1	1	1	3	4
150	154	5	5							3	3	3	3	3	4			2	2	3	3	3	3			1	1	1	1 2	2	2	4	5
180 220	184 224									3	4	3 4	3	5	4 5			3	3	3	3	3 4	4			1	2	1 2	2	2	3	4 5	
270 330	274 334									4 5	4 5	5	5					4	4	4 5	4 5	5	5			2	2	2	2	3	3		
390	394									3	3							5	5	3	3					2	3	3	3	4	4		
470 560	474 564																									3	3	3 4	3	4 5	5		
680	684																									4	4	4	4				
820 1.0μF	824 105																									4 5	5	5	5				
1.2	125																																
1.5	155 185																																
2.2	225																																
2.7	275																																

Capacitor Assemblies - ST, SM - COG/NPO

COG/NPO Capacitance and Voltage Selection


Note: Capacitance values are shown as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000pF.

			45	40							55	50							65		J					,	75		. 20.		.g. 10		ze
5	0V	10	00V	20	0V	50	0V	50)V	10	0V	20	0V	50	0V	5	0V	10	0V	20	0V	50	0V	50)V	10	0V	20	0V	50	0V	Rated \	Voltage
ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	Сар	Code
																																10pF	100
							ips r																									12 15	120 150
			acl	niev	e the	e ca	pacit	tanc	e va	llue																						18 22	180 220
																																27	270
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1									33 39	330 390
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1									47	470
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1									56 68	560 680
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1									82	820
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100pF 120	101 121
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	150	151
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	180 220	181 221
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	270	271
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	330 390	331 391
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	470	471
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	560 680	561 681
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	820	821
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.0nF 1.2	102 122
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.5	152
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.8 2.2	182 222
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2.7	272
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	3.3	332 392
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4.7	472
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	5.6 6.8	562 682
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	8.2	822
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	10nF 12	103 123
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	15	153
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	18 22	183 223
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	27	273
1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	33 39	333 393
1	_	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	47	473
1	_	1	1	1	1	2	2	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	56 68	563 683
1	1	1	1	1	1	2	3	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	82	823
1	_	1		1	1	3	3	1	1	1	1	1	1	2	3	1	_	1	1	1	1	1	2	1	1	1	1	1	1	1	_	100nF 120	104 124
1	1	1	1	2	2	3	5	1	1	1	1	1	2	3	4	1	1	1	1	1	1	2	3	1	1	1	1	1	1	1	2	150	154
1	_	1 2		2	2	4 5	5	1	1	1	2	2	2	3	4 5	1		1	1	1	1 2	2	3	1	1	1	1	1	1	2	3	180 220	184 224
2	2	2	2	2	3			1	1	2	2	2	2	4		1	1	1	1	2	2	3	4	1	1	1	1	1	1	2	3	270	274
2	_	2		3	3			2	2	2	2	3	3	5		1	1	2	2	2	2	3	5	1	1	1	1	2	2	3	4	330 390	334 394
2	3	3	3	4	4			2	2	3	3	3	4			2	2	2	2	3	3			1	1	2	2	2	2	4	5	470	474
3	_	3		4 5	5			3	3	3	3	4	4 5			2	2	3	3	3	3			2	2	2	2	2	3	5		560 680	564 684
4	4	4	_					3	3	4	4	5				2	2	3	3	4	4			2	2	2	2	3	3			820	824
5	5	5						4	5	4 5	5					3	3	4	4	4 5	5			2	2	3	3	3	4			1.0µF 1.2	105 125
								5								4	4	5	5					3	3	4	4	5	5			1.5	155
								5								5 5	5	5						3	3	4 5	4 5					1.8	185 225
																								5	5							2.7	275

Capacitor Assemblies - ST, SM - X7R

X7R Capacitance and Voltage Selection

Capacitor Assemblies - ST, SM - X7R

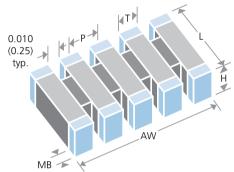
X7R Capacitance and Voltage Selection

Note: Capacitance values are shown as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000pF.

ST SM				45	40							55	50							65		J			ES 10		,		65					ze
1	50	V	10	ov	20	OOV	50	OV	50	ΟV	10	ov	20	ov	50	ov	5	οV	10	ov	20	ov	50	ov	50	V	10	ov	20	OV	50	OV	V	dc
1	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	ST	SM	Сар	Code
1	_			_	_	_		_		_								_		_	_	_						_		1		_		102 122
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	-	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	_	1	1	1	1	1	_	1	1	1.5	152
1		1		_	_	_		_		_					1	1		_		_		_		1		1		_		_		_		182 222
1	_			_	_	_		_		_	_	_			1	1	-	_		_	_			1		1		1		1	_	_		272 332
1			_	_	_	_		_		_	-			_	1	1	_	_			_			1		1		1	-	1		_		392
1	_			_	_	_		_	_	_	_	_				1	-	_	_	_				1				_		_	_	_		472 562
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	-	1	1	1	1	1	-	1	1	1		1	1	1	1	1	1	6.8	682
1	_			_	_	_		_	_	_	_	_		_	_	_	-	_		_		_		1		_		_		_	_	_		822 103
1	_			_		-		_		_								_		_				1			_	_		_		_		123 153
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	18	183
1	_	_		-		_		_		_					-	-		_		_		•		1		1	_	-				-		223 273
1	1	1	1	1	1	1	1	1	1	_	1	1	1	1	1	1	1	1	1	1	1		1	1			1	1	1	1	1	1	33	333
1	_			_	_	-		_				_		_	-			_	_	_				1			_	_		_	_	_		393 473
1	_			_	_	_		_		_	-							_		_				1		1		_		_		_		563 683
1 1 1 1 1 1 1 1 1 1	_	1		_		-		_		_					1			_		_		-		1			_	_		_		_		823
1	_			_	_	_		_		_					-	_	_	_		_	_			1		-				-		_		104 124
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1		1		1	1	1	1	1	1	1	1	150	154
1		_		_	_	_		_							1	1		-		_		1		1		1		_		_		_		184 224
1	_			_	_	_		_				_				1		_		_	_	_		1		1		1		1	_	_		274 334
1				_	_	_		_						_	_	1	_	_		_				1		1		1		1		_		394
1	_			_	_	_		-										_	_	_		_		1				_		_		_		474 564
1 1 1 1 1 1 1 1 2 3 1 1 1 1 2 3 1 1 1 1	1	1	1	1	1	1	2	2	1	1	1	1	1	1	1	2	1	1	1	1	1	_	1	1	1	-	1	1	1	_	1	1	680	684
1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 2 3 1 1 1 1	_			_		_		_				_				_		_		_		_		_				_		_				824 105
1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	-	1	_	1	_	2	3	1			1	1		2	2	1	_	1	1	1		2	2		_	1			_	1	2	1.2	125
1 1 1 1 1 2 2 2 5 1 1 1 1 1 2 2 4 5 1 1 1 1 1 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	1	1	1	1		-		_		_				3	1	_	_	_		_		_	_			_		_		2		155 185
1 1 1 2 2 2 3 3 4 1 1 1 1 1 2 2 2 2 3 3 3 4 5 2 2 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				_				5				_		1				_	_	-		_			- 1	1	-	1		_				225 275
1 1 2 2 3 3 3 1 1 1 2 2 2 2 3 3 3 1 1 1 2 2 2 2	1	1	1	2	2	2	J		1	1	1	1	2	2		3	1	1	1	1	1	1	3	4	1	1	1	1	1	1	3	4	3.3	335
2 2 2 3 3 4 4 1 1 1 2 2 3 3 3 1 1 1 2 2 2 3 6.8 2 2 2 3 4 4 5 2 2 2 3 3 4 4 5 1 1 1 2 2 3 3 3 4 1 1 1 1 2 2 3 3 3 1 1 1 1 2 2 2 3 3 3 4 1 5 1 2 2 3 3 4 4 5 1 2 2 3 3 4 4 5 1 2 2 3 3 4 4 5 1 2 2 3 3 3 4 5 1 2 2 3 3 4 4 5 1 2 2 3 3 3 4 5 1 2 2 3 3 3 4 4 5 1 2 2 3 3 3 4 4 5 1 2 2 3 3 3 4 4 5 1 2 2 3 3 3 4 4 5 1 2 2 3 3 3 4 4 5 1 2 2 3 3 3 4 4 5 1 2 2 3 3 3 4 4 5 1 2 2 3 3 3 4 4 5 1 2 2 3 3 3 4 4 5 1 2 2 3 3 3 4 4 5 1 2 2 3 3 3 4 4 5 1 2 2 3 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 1										_				2								_		5						_				395 475
2 2 3 3 4 5 2 2 2 3 3 4 4 5 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 2 3 1 10µF 3 3 4 5 2 2 2 3 4 4 5 1 2 2 3 3 3 4 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 1	2	2	2	2	3	3			1	1	2	2	2	3			1	1	1	1	2	2			1	1	1	1	2	2			5.6	565
2 3 3 4 5 2 2 3 3 4 4 5 11 2 2 3 3 3 11 1 2 2 2 3 3 110µF 3 3 4 5 2 2 3 4 4 5 5 1 2 2 3 3 3 11 1 2 2 2 3 3 3 11 1 2 2 2 3 3 3 11 1 1 2 2 2 3 3 3 11 1 1 2 2 2 3 3 3 11 1 1 2 2 2 3 3 3 1 1 1 1	_					_			_								_	_		2					_			_		2				685 825
3 4 5 2 3 4 4 5 2 2 3 3 4 4 5 15 4 5 16 4 5 16 4 5 16 4 5 16 4 6 5 16 6 8 16 8 16 8 16 8 16 8 16 8 16	2	3	3	4					2	2	3	3	4	4			1	1	2	2	3	3			1	1	2	2	2	3			10μF	106
4 4 5 3 3 5 5 2 2 3 4 4 5 2 2 3 4 4 5 2 2 3 4 4 5 2 2 3 4 4 5 2 2 3 4 4 5 2 2 3 4 4 5 2 2 3 4 4 5 2 2 3 4 4 5 2 2 3 4 4 5 2 2 3 4 4 5 2 2 3 4 4 5 2 2 3 4 4 5 2 2 3 4 4 5 2 3 3 5 5 3 3 3 5 5 3 3 3 3 5 5 3 3 3 3 5 5 3 3 3 3 5 5 3 3 3 3 5 5	_	4	5	3					2	3	4	4		3			2	2	3	3	4	4			2	2	2	3	_	4				126 156
5	_		5									5						2				5			=					4				186 226
5 4 4 3 3 5 39 4 5 4 4 47 Number of chips required to achieve the capacitance value 5 4 5 56 68	_	J							4	5	J						3	3	5						2	3	4	4		3			27	276
Number of chips required to achieve the capacitance value 4 5 4 4 4 4 5 56 68										5							_		5									5						336 396
achieve the capacitance value 5 68								C de									4								4	4							47	476
																	5									5								566 686
02 100µF																																	82 100uE	826 107

Capacitor Assemblies - 'Cap-Rack' Arrays

The 'Cap-Rack' (US Patent 6,058,004) is an assembly of individual chip capacitors, bonded with high temperature epoxy. A 'Cap-Rack' can be made up of a pair, to as many as eight same size chips - 0603, 0805, 1005, 1206, 1210, 1808, 1812, 1825, 2221 and 2225 - into one single component providing extended freedom for PCB space utilization. Footprint dimensions can also vary to further optimize board space usage. The patented design allows the chips to behave as individual components, not as a single large ceramic mass, and therefore reduces harmful thermal stress during assembly. Typical applications are in Multi-line designs, Mobile phones, Automotive, Computers, Network Devices and Medical products.


Electrical advantages include reduction in "cross talk", to insignificant levels, by elimination of capacitance coupling between adjacent capacitors; the ability to combine resistors and inductors within the 'Cap-Rack', as well as mixing and matching capacitance values and dielectrics.

Mechanical advantages include reduced board area; easier to handle; reduced placement cost; reduces component stress and decreased cycle time. 'Cap-Rack' can also be used with traditional pick and place equipment.

Consult the sales office for High Reliability versions and custom designs, particularly for high voltage applications.

- For dielectric characteristics see pages 2 to 4.
- For dimensions of individual chips see page 20.
- P and AW dimensions are dependant on the chips utilized in the array.
- Cap Arrays require drawings to specify length and width of array and chip size used. Please contact the Sales Office.

Dimensions - inches/mm

Size	0603	0805	1005	1206	1210	1808	1812	1825	2221	2225
Max number of Caps	6	6	6	6	6	6	8	8	8	8

Ordering information - 'Cap-Rack' Arrays

CR	1206	N	562	K	101	N	H	T	- 4	
Style	Size	Dielectric	Capacitance in picofarads (pF)	Capacitance tolerance	Voltage d.c.	Termination	Hi-Rel Option	Packing	No. of chips	
Cap-Rack	Size of individual chips that make up the array	N = COG/NPO B = X7R	Value in Picofarads. Two significant figures, followed by number of zeros: 562 = 5600pF	$B = 0.10 pF* \\ C = 0.25 pF* \\ D = 0.50 pF* \\ F = \pm 1.0 \%* \\ G = \pm 2.0 \%* \\ H = \pm 3.0 \%* \\ J = \pm 5 \% \\ K = \pm 10 \% \\ M = \pm 20 \% \\ Z = +80 \% -20 \% \\ P = +100 \% -0 \%$	Two significant figures, followed by number of zeros: 101 = 100V	N = Nickel Barrier (100% tin) P = Palladium Silver Y = Nickel Barrier (90% tin/10% lead)	Ref: MIL- PRF-55681 & MIL-PRF-123	T = Tape & Reel W = Waffle Pack		

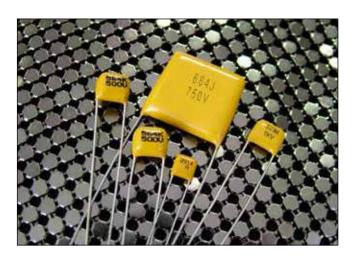
Radial Leaded Capacitors - Ordering Information

Novacap ordering information - Radial Leaded - Standard and High Rel

0805	В	123	K	501	LE	Α	R
Size	Dielectric	Capacitance	Tolerance	Voltage-VDCW	Lead Styles	Packing	RoHS
See charts	$\begin{split} \mathbf{N} &= COG/NPO \\ \mathbf{B} &= X7R \\ \mathbf{RN} &= COG/NPO \\ RoHS &= 2013 \leq 200V \\ \mathbf{RB} &= X7R &\; RoHS \\ 2013 \leq 200V \\ \mathbf{S} &= X8R \\ not &\; RoHS &\; compliant \end{split}$	Value in Picofarads. Two significant figures, followed by number of zeros: 123 = 12,000pF	$F = \pm 1\%*$ $G = \pm 2\%*$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ *COG parts only	Two significant figures, followed by number of zeros: 501 = 500V	LE, LB, LD, LR, LQ* = Yellow conformal coated LO = without any coating * Product and Case size dependant	No suffix = Bulk A = Ammo pack 2K/pack T = Tape & Reel 4K/Reel	R = RoHS Compliant

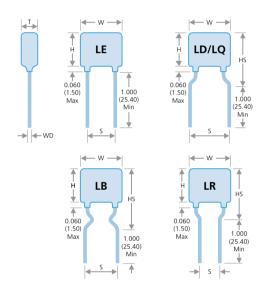
Novacap ordering information - Radial Leaded - High Temperature

25	20 E	563	K	501	LG	W	R
Siz	e Dielectric	Capacitance	Tolerance	Voltage-VDCW	Lead Styles	Packing	RoHS
Se cha		Value in Picofarads. Two significant figures, followed by number of zeros: 563 = 56,000pF	$F = \pm 1\%*$ $G = \pm 2\%*$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ *COG parts only	Two significant figures, followed by number of zeros: 501 = 500V	LC = Encapsulated LG = Black Epoxy Coated LO = without any coating	No suffix = Bulk W = Waffle pack	R = RoHS Compliant Only available on ≥250V


Syfer ordering information - Radial Leaded - Standard

8111M	100		0102	J	С		
Type No./ Size ref.	Voltage Value	d.c. Marking code	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric Rel Release codes	Suffix code	Suffix code
8111M 8111N 8121M 8121N 8121T 8131M 8131T 8141M 8151M 8161M 8165M 8171M	050 = 50V 063 = 63V 100 = 100V 200 = 200V 250 = 250V 500 = 500V 630 = 630V 1K0 = 1kV 1K2 = 1.2kV 1K5 = 1.5kV 2K0 = 2kV 2K5 = 2.5kV 3K0 = 3kV 4K0 = 4kV	(C) (D) (E) (F) - (Q) - - - - -	<10pF Insert a P for the decimal point as the second character. eg. 8P20 = 8.2pF ≥10pF First digit is 0. Second and third digits are significant figures of capacitance code. Fourth digit is number of zeros eg. 0101 = 100pF	<10pF D: \pm 0.5pF F: \pm 1.0pF ≥10pF J: \pm 5% K: \pm 10% M: \pm 20% ≥27pF G: \pm 2% (COG/NP0 only).	C = COG/NPO (1B/CG; CG/BP) X = X7R (2R1) To Special Order B = 2X1 (BX) R = 2C1 (BZ)	Used for specific customer requirements.	C42 denotes RoHS compliant. A31 or A97 denote non-RoHS tin/lead wires. Suffix A97 for 8111 to 8141 & A31 for 8151, 8161, 8171.
	5KO = 5kV 6KO = 6kV 8KO = 8kV 10K = 10kV 12K = 12kV	- - - - -	Note: The voltage code discretion. Marking may				K5V) at Syfer's

Standard Radial Leaded Capacitors - 50V to 5kV


RoHS compliant interconnects, small case size, Radial Leaded capacitors available in COG/NPO, X7R and X8R dielectrics. The conformal coating and lead mounting style provide a rugged configuration for optimum performance. Units exhibit high capacitance efficiency per kV rating and find application in commercial/industrial use up to 5kV, such as power supplies and voltage multiplier circuits. They are offered in bulk pack or taped form, Ref EIA-RS468, making them suitable for automatic insertion.

• For ordering information see page 83.

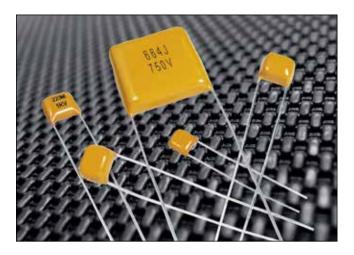
Dimensions - inches/mm

Lead Style	LE	LD	LR	LD	LQ	LD	LE	LB
Size	0805	0805	1206	1206	1206	1210	1812	2225
Wmax inches:	0.150	0.150	0.200	0.200	0.200	0.200	0.300	0.350
mm:	3.81	3.81	5.08	5.08	5.08	5.08	7.62	8.89
Hmax inches:	0.150	0.150	0.150	0.150	0.150	0.200	0.250	0.350
	3.81	3.81	3.81	3.81	3.81	5.08	6.35	8.89
Tmax inches: mm:	0.100	0.100	0.125	0.125	0.125	0.175	0.200	0.200
	2.54	2.54	3.18	3.18	3.18	4.45	5.08	5.08
HSmax inches:	0.200	0.250	0.250	0.250	0.250	0.300	0.350	0.500
	5.08	6.35	6.35	6.35	6.35	7.62	8.89	12.70
S inches ±0.02:	0.100	0.200	0.100	0.200	0.250	0.200	0.200	0.200
mm ±0.51:	2.54	5.08	2.54	5.08	6.35	5.08	5.08	5.08
WD inches ±0.02: mm ±0.51:	0.020	0.020	0.020	0.020	0.020	0.020	0.025	0.025
	0.51	0.51	0.51	0.51	0.51	0.51	0.64	0.64

Capacitance and Voltage Selection - Commercial Radial Leaded Capacitors

Size		0805			1206			1210			1812			2225	
Min cap.	100	121	121	100	121	221	100	121	331	101	151	221	101	471	102
Dielectric	COG	X7R	X8R	COG	X7R	X8R									
50V	3.9nF	100nF	47nF	12nF	270nF	150nF	22nF	470nF	270nF	39nF	1.2µF	56 0nF	120nF	1.8µF	1.2µF
100V	3.9nF	68nF	33nF	10nF	180nF	100nF	18nF	330nF	180nF	27nF	820nF	390nF	82nF	1.5 µF	1.0μF
250V	1.5nF	27nF	18nF	3.9nF	68nF	33nF	8.2nF	120nF	82nF	22nF	390nF	15 0nF	47nF	82 0 nF	560nF
500V	820pF	12nF	5.6nF	1.8nF	22nF	15nF	4.7nF	56nF	39nF	12nF	150nF	56nF	27nF	33 0 nF	15 0nF
1kV	470pF	2.7nF	•	1.0nF	6.8nF	•	2.2nF	15nF	•	8.2nF	47nF	•	15nF	100nF	•
2kV	•	•	•	390pF	1.0nF	•	820pF	2.2nF	•	2.7nF	6.8nF	•	3.9nF	15nF	•
3kV	•	•	•	•	•	•	•	•	•	1.2nF	2.7nF	•	1.8nF	5.6nF	•
4kV	•	•	•	•	•	•	•	•	•	820pF	1.2nF	•	1.0nF	1.5nF	•
5kV	•	•	•	•	•	•	•	•	•	•	•	•	560pF	1.0nF	•

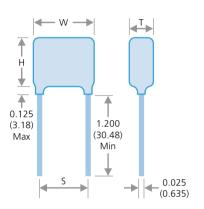
Notes: 1) Maximum capacitance values are shown above as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000pF. R denotes decimal e.g. 2R7 = 2.7pF.


²⁾ Parts in this range may be defined as dual-use under export control legislation as such may be subject to export licence restrictions.

Please refer to page 12 for more information on the dual-use regulations and contact the Sales Office for further information on specific part numbers.

Standard Radial Leaded Capacitors - 500V to 10kV

RoHS or Non RoHS Radial Leaded Capacitors available in COG/NPO and X7R dielectrics with high voltage ratings from 500V. The conformal coating and lead mounting style provide a rugged configuration for optimum performance. Units exhibit high capacitance efficiency per kV rating and find application in commercial/industrial use up to 10kV, such as power supplies and voltage multiplier circuits. They are also offered without the conformal coating for less harsh environmental applications.


• For ordering information see page 83.

Dimensions - inches/mm

Lead Style		LE with	conforn	nal coati	ng - LO	without	
Size	1515	2520	3530	4540	5550	6560	7565
Wmax inches: mm:	0.250 6.35	0.400 10.20	0.500 12.70	0.600 15.20	0.700 17.80	0.800 20.30	0.900 22.80
Hmax inches: mm:	0.250	0.350	0.450	0.550	0.650	0.750	0.850
	6.35	8.89	11.40	14.00	16.50	19.00	21.60
Tmax inches: mm:	0.200	0.250	0.350	0.400	0.400	0.400	0.400
	5.08	6.35	8.89	10.20	10.20	10.20	10.20
S inches ±0.02:	0.170	0.280	0.380	0.480	0.580	0.680	0.780
mm ±0.51:	4.32	7.10	9.65	12.20	14.70	17.30	19.80

Capacitance and Voltage Selection - Standard Radial Leaded Capacitors

Size	15	15	25	20	35	30	45	40	55	50	65	60	75	65
Min cap.	100	151	390	102	390	102	390	102	390	102	560	222	101	222
Dielectric	COG	X7R	COG	X7R	COG	X7R	COG	X7R	COG	X7R	COG	X7R	COG	X7R
500V	8.2nF	150nF	39nF	680nF	68nF	1.0µF	120nF	1.8µF	18 0 nF	2.2µF	270nF	3.3µF	330nF	4.7µF
600V	6.8nF	120nF	22nF	390nF	39nF	680nF	82nF	1.5µF	15 0nF	2.2µF	22 0 nF	2.7µF	270nF	3.9µF
800V	6.8nF	82nF	18nF	270nF	33nF	390nF	68nF	820nF	120nF	1.5µF	18 0 nF	2.2µF	220nF	2.7µF
1kV	5.6nF	56nF	12nF	18 0 nF	27nF	330nF	56nF	680nF	100nF	1.0μF	15 0nF	1.5µF	18 0 nF	2.2µF
2kV	2.7nF	8.2nF	5.6nF	27nF	15nF	68nF	33nF	180nF	47nF	270nF	68nF	390nF	100nF	470nF
3kV	1.2nF	3.3nF	2.7nF	12nF	10nF	27nF	22nF	68nF	33nF	12 0 nF	47nF	18 0 nF	56nF	220nF
4kV	6.8nF	1.2nF	1.5nF	4.7nF	5.6nF	15nF	12nF	33nF	18nF	47nF	27nF	82nF	39nF	100nF
5kV	•	•	1.0nF	2.7nF	3.3nF	10nF	8.2nF	18nF	12nF	33nF	18nF	47nF	22nF	56nF
6kV	•	•	•	•	1.8nF	5.6nF	3.9nF	12nF	5.6nF	22nF	10nF	33nF	12nF	39nF
7kV	•	•	•	•	1.2nF	4.7nF	2.7nF	8.2nF	4.7nF	15nF	6.8nF	22nF	8.2nF	27nF
8kV	•	•	•	•	1.0nF	3.3nF	2.2nF	6.8nF	3.3nF	12nF	5.6nF	15nF	6.8nF	22nF
9kV	•	•	•	•	•	2.7nF	1.8nF	4.7nF	2.7nF	10nF	3.9nF	12nF	4.7nF	18nF
10kV	•	•	•	•	•	1.8nF	1.5nF	3.9nF	2.2nF	6.8nF	3.3nF	10nF	3.9nF	12nF

Notes: 1) Maximum capacitance values are shown above as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000pF. R denotes decimal e.g. 2R7 = 2.7pF.

²⁾ Parts in this range may be defined as dual-use under export control legislation as such may be subject to export licence restrictions.

Please refer to page 12 for more information on the dual-use regulations and contact the Sales Office for further information on specific part numbers.

Standard Radial Leaded Capacitors - COG/NPO, X7R

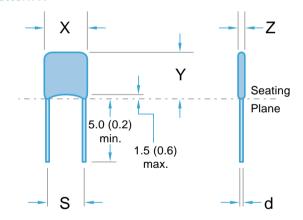
Knowles produces a wide range of dipped radial leaded capacitors. These are available in rated voltages of 50V up to 6kV. Although our catalogue range extends to 6kV, we are able to offer a capability for specials up to 12kV. Our larger case sizes and high voltage versions are particularly in demand, especially for mil/aero and medical power supply applications. Please contact the Sales Office to discuss any special requirements.

- High working voltage up to 12kVdc
- Large case sizes
- RoHS compliant versions
- Tin-lead plated wire option to reduce tin whiskers (quote suffix A97 for 8111 to 8141 & A31 for 8151, 8161, 8171).
- For ordering information see page 83.

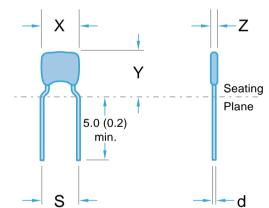
		8111M	8111N	8121M	8121N	8121T	8131M	8131M T = 6.3mm	8131T	8141M	8151M	8151M T = 6.3mm	8161M	8161M T = 7.0mm	8171M	8171M T = 7.0mm
Min. cap	COG/NP0	4.7pF	4.7pF	4.7pF	4.7pF	4.7pF	4.7pF	-	10pF	4.7pF	10pF	-	27pF	-	47pF	-
values	X7R	100pF	100pF	100pF	100pF	330pF	100pF	-	150pF	100pF	470pF	-	1.0nF	-	1.8nF	-
50/63V	COG/NP0	5.6nF	5.6nF	33nF	33nF	33nF	220nF	-	100nF	220nF	330nF	-	680nF	-	1.0µF	-
007001	X7R	220nF	220nF	1.0μF	1.0μF	1.0µF	3.3µF		2.2µF	4.7μF	10μF	-	15μ F	-	22µF	-
100V	COG/NP0	2.2nF	2.2nF	18nF	18nF	18nF	82nF	-	47nF	82nF	270nF	-	470nF	-	680nF	-
	X7R	100nF	100nF	680nF	680nF	680nF	2.7µF	-	1.5µF	2.7µF	5.6µ F	-	10μF	-	15μ F	-
200/	COG/NPO	1.0nF	1.0nF	8.2nF	8.2nF	8.2nF	47nF	68nF	22nF	47nF	120nF	180nF	270nF	330nF	390nF	560nF
250V	X7R	56nF	56nF	330nF	330nF	330nF	1.5µF	-	680nF	1.5µF	3.3µF	-	5.6µF	-	10μF	-
500V	COG/NP0	680pF	680pF	6.8nF	6.8nF	6.8nF	33nF	47nF	15nF	33nF	82nF	120nF	180nF	270nF	270nF	470nF
	X7R	15nF	15nF	150nF	150nF	150nF	820nF	-	330nF	820nF	1.0μF	-	1.8µF	-	3.3µF	-
630V	COG/NP0	560pF	560pF	3.9nF	3.9nF	3.9nF	22nF	39nF	10nF	22nF	68nF	100nF	120nF	180nF	220nF	390nF
	X7R	12nF	12nF	100nF	100nF	100nF	390nF	-	180nF	470nF	680nF	-	1.2µF	-	2.2µF	-
1kV	COG/NP0	180pF	180pF	2.2nF	2.2nF	2.2nF	18nF	27nF	6.8nF	18nF	47nF	82nF	82nF	150nF	150nF	270nF
	X7R	10nF	10nF	47nF	47nF	47nF	150nF		100nF	150nF	180nF	-	390nF	-	1.0µF	-
1.2kV	COG/NP0	120pF	120pF	1.5nF	1.5nF	1.5nF	12nF	22nF	4.7nF	12nF	33nF	56nF	68nF	100nF	100nF	180nF
	X7R	-	-	10nF	10nF	10nF	100nF		33nF	100nF	150nF	-	220nF		470nF	-
1.5kV	COG/NP0	82pF	82pF	820pF	820pF	820pF	6.8nF	12nF	2.7nF	6.8nF	22nF	39nF	39nF	68nF	68nF	120nF
	X7R	-	-	6.8nF	6.8nF	6.8nF	68nF		22nF	68nF	100nF	-	150nF	-	330nF	-
2kV	COG/NP0	39pF	39pF	390pF	390pF	390pF	4.7nF	6.8nF	1.5nF	4.7nF	10nF	18nF	22nF	39nF	39nF	68nF
	X7R	-	-	4.7nF	4.7nF	4.7nF	33nF	-	10nF	47nF	47nF	-	82nF	-	150nF	-
2.5kV	COG/NP0	-	-	220pF	220pF	220pF	2.2nF	3.9nF	820pF	2.2nF	6.8nF	12nF	12nF	22nF	22nF	39nF
	X7R	-	-	-	-	-	12nF	-	3.3nF	12nF	33nF	-	68nF	-	100nF	-
3kV	COG/NP0	-	-	150pF	150pF	150pF	1.8nF	2.7nF	560pF	1.8nF	4.7nF	8.2nF	10nF	18nF	15nF	27nF
	X7R	-	-	-	-	-	8.2nF	-	2.7nF	10nF	22nF	-	47nF	-	82nF	-
4kV	COG/NP0	-	-	-	-	-	820pF	1.5nF	270pF	820pF	1.8nF	3.3nF	4.7nF	6.8nF	8.2nF	15nF
	X7R	-	-	-	-	-	5.6nF	-	2.2nF	5.6nF	6.8nF	-	15nF	-	33nF	-
5kV	COG/NPO	-	-	-	-	-	560pF	1.0nF	180pF	560pF	1.5nF	2.2nF	2.7nF	4.7nF	5.6nF	10nF
	X7R	-	-	-	-	-	4.7nF		1.2nF	4.7nF	5.6nF	-	10nF		22nF	-
6kV	COG/NP0	-	-	-	-	-	390pF	680pF	120pF	390pF	1.0nF	1.5nF	1.8nF	3.3nF	3.9nF	6.8nF
	X7R	-	-	-	-	-	2.7nF		1.0nF	2.7nF	4.7nF	-	8.2nF	-	15nF	-
8kV	COG/NPO	-	-	-	-	-	-	-	-	-	150pF	-	330pF	-	680pF	-
	X7R	-	-	-	-	-	-	-		-	1.5nF	-	4.7nF	-	6.8nF	-
10kV	COG/NPO	-	-	-	-	-	-		-	-	100pF	-	180pF	-	470pF	-
	X7R	-	-	-	-	-	-	-		-	1.0nF	-	2.2nF	-	4.7nF	-
12kV	COG/NPO	-	-	-	-	-	-	-		-	68pF	-	120pF	-	220pF	-
	X7R	-		-	-	-	-	-		-	820pF		1.2nF		2.2nF	-
		8111M	8111N	8121M	8121N	8121T	8131M	8131M T = 6.3mm	8131T	8141M	8151M	8151M T = 6.3mm	8161M	8161M T = 7.0mm	8171M	8171M T = 7.0mm

Notes: 1) T = Maximum thickness.

²⁾ Parts in this range may be defined as dual-use under export control legislation as such may be subject to export licence restrictions.


Please refer to page 12 for more information on the dual-use regulations and contact the Sales Office for further information on specific part numbers.

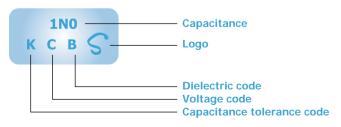
Standard Radial Leaded Capacitors - Packaging information


Dimensions - Radial Leaded capacitors

		Width	Height	Thickness	Lead Space	Lead Diameter
	Pattern	(X) max. mm (inches)	(Y) max. mm (inches)	(Z) max. mm (inches)	(S) mm (inches)	(d) mm (inches)
8111M	Α	3.81 (0.15)	5.31 (0.21)	2.54 (0.10)	2.54 ±0.4 (0.1 ±0.016)	0.5 ±0.05 (0.02 ±0.002)
8111N	В	3.81 (0.15)	5.31 (0.21)	2.54 (0.10)	5.08 ±0.4 (0.2 ±0.016)	0.5 ±0.05 (0.02 ±0.002)
8121M	Α	5.08 (0.20)	6.58 (0.26)	3.18 (0.125)	2.54 ±0.4 (0.1 ±0.016)	0.5 ±0.05 (0.02 ±0.002)
8121N	В	5.08 (0.20)	6.58 (0.26)	3.18 (0.125)	5.08 ±0.4 (0.2 ±0.016)	0.5 ±0.05 (0.02 ±0.002)
8121T	В	10.16 (0.40)	5.80 (0.23)	4.50 (0.18)	7.62 ±0.4 (0.30 ±0.016)	0.5 ±0.05 (0.02 ±0.002)
8131M	Α	7.62 (0.30)	9.12 (0.36)	3.81/6.30 (0.15/0.25)	5.08 ±0.4 (0.2 ±0.016)	0.5 ±0.05 (0.02 ±0.002)
8131T	В	10.16 (0.40)	9.12 (0.36)	4.50 (0.18)	7.62 ±0.4 (0.30 ±0.016)	0.5 ±0.05 (0.02 ±0.002)
8141M	Α	10.16 (0.40)	11.66 (0.46)	3.81 (0.15)	5.08 ±0.4 (0.2 ±0.016)	0.5 ±0.05 (0.02 ±0.002)
8151M	Α	12.70 (0.50)	14.20 (0.56)	5.08/6.30 (0.20/0.25)	10.1 ±0.4 (0.4 ±0.016)	0.6 ±0.05 (0.025 ±0.002)
8161M	А	18.50 (0.73)	16.50 (0.65)	6.00/7.00 (0.24/0.28)	14.5 ±0.5 (0.57 ±0.02)	0.6 ±0.05 (0.025 ±0.002)
8165M	Α	19.00 (0.75)	19.00 (0.75)	4.25 (0.17)	17.5 ±0.5 (0.67 ±0.02)	0.6 ±0.05 (0.025 ±0.002)
8171M	Α	25.00 (0.98)	20.00 (0.79)	6.00/7.00 (0.24/0.28)	21.0 ±0.6 (0.83 ±0.024)	0.6 ±0.05 (0.025 ±0.002)

Pattern A

Pattern B



Note: Pattern A may be substituted with Pattern B at Knowles' discretion.

Marking information

All encapsulated capacitors are marked with: Capacitance value, tolerance, rated d.c. voltage, dielectric and, where size permits, the Syfer 'S' logo.

Example: 1000pF ±10% 50V 2X1 dielectric

Note: Parts in this range may be defined as dual-use under export control legislation as such may be subject to export licence restrictions. Please refer to page 12 for more information on the dual-use regulations and contact the Sales Office for further information on specific part numbers.

Radial Leaded Capacitors - Packaging information

Cropped leads

Cropped leads between 4.0 (0.157) and 30.0 (1.18) are available to special order. Some of the preferred codes are listed below, together with the appropriate suffix code.

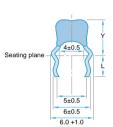
Dimensions as for standard product except as specified.

Suffix code - AE3	Suffix code - AE4	Suffix code - AD7	Suffix code - AD5
All radial ranges	All radial ranges	All radial ranges	All radial ranges
Lead length (L)	Lead length (L)	Lead length (L)	Lead length (L)
6 ±1 (0.236 ±0.04)	4 ± 1 (0.162 ± 0.04)	$5 \pm 1 (0.2 \pm 0.04)$	10 ± 1 (0.4 ±0.04)
from seating plane	from seating plane	from seating plane	from seating plane
Dimensions mm (inches)			

()

Snap in leads

Dimensions as for standard product except as specified.

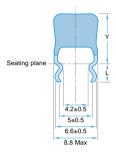

Suffix code - AD1

For PCB holes 0.9mm diameter Types 8121N and 8131M

Dimensions

Y = 8121N 8 (0.315) Max 8131M 10 (0.394) Max

L = Min: 2.75 (0.108) Max: 3.50 (0.138)

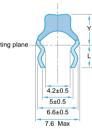


Suffix code - AD2

For PCB holes 1.2mm diameter Types 8131M

Dimensions

Y = 10 (0.294) Max L = Min: 2.75 (0.108) Max: 3.50 (0.138)

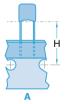


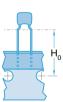
Suffix code - AD3

For PCB holes 1.2mm diameter Types 8121N

Dimensions

Y = 8 (0.315) Max L = Min: 2.75 (0.108) Max: 3.50 (0.138)

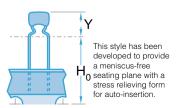

Suffix code


Bandoliered suffix codes

Dipped radial leaded with 2.54 and 5.08mm lead spacing can be supplied bandoliered on reels or in ammo boxes to special order. Some of the preferred suffix codes for bandoliered products are given below.

For bandoliered products the minimum order quantity, pieces, is specified in the tables below, larger orders must be in multiples of this quantity.

Dipped - straight and formed leads



					Reel	AMMC) pack
Product code	Lead style	Diagram	Н	H ₀	2500pcs	1000pcs	2000pcs
8111M	Straight 2.54 crs	Α	19±1	-	C01	C02	C11
8111M	Straight 2.54 crs	Α	16±0.5	-	C30	C31	C32
8111N	Formed 5.08 crs	В	-	16±0.5	C01	C02	C11
8121M	Straight 2.54 crs	Α	19±1	-	C01	C02	C11
8121M	Straight 2.54 crs	Α	16±0.5	-	C30	C31	C32
8121N	Formed 5.08 crs	В	-	16±0.5	C01	C02	C11
8131M	Straight 5.08 crs	Α	19±1	-	C01	C02	C11
8131M	Straight 5.08 crs	Α	16±0.5	-	C30	C31	C32

Note: 8121T and 8131T available in bulk packaging only.

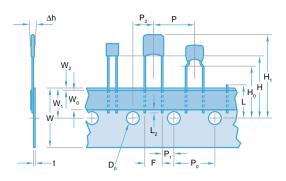
Dipped - stand-off lead form

Product code	Lead style	Y max	H ₀	2500pcs	1000pcs	2000pcs
8111N	Formed 5.08 crs	7.5	16±0.5	C12	C23	C22
8111N	Formed 5.08 crs	7.5	19±1	C13	C25	C24
8121N	Formed 5.08 crs	8.5	16±0.5	C12	C23	C22
8121N	Formed 5.08 crs	8.5	19±1	C13	C25	C24

Radial Leaded Capacitors - Packaging information

For automatic insertion, the number of empty places in the tape per reel or fan-fold arrangement shall not exceed:

Three (3) missing components, when the component pitch is equivalent to one sprocket hole pitch.

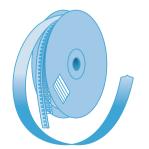

One (1) missing component, when the component pitch is equivalent to two sprocket hole pitches or more.

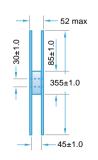
At the beginning and end of a reel the bandolier will exhibit at least 10 blank positions.

Minimum pull strength of product from tape = 5N.

Each reel/carton is provided with a label showing the: Manufacturer, product style, batch identification, quantity and date code.

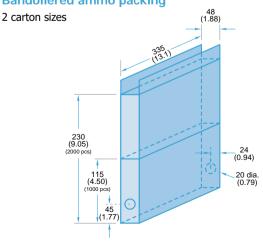
Labelling with bar codes (code 39) is available on request.




In accordance with IEC 60286 part 2.

Dimensions mm (inches)

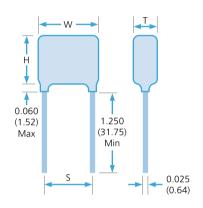
Description	Symbol	2.5mm lead space	5mm lead space	Tolerance
Lead wire diameter	d	0.5 (0.02) 0.6 (0.025)	0.5 (0.02) 0.6 (0.025)	±0.05 (0.002)
Component pitch	P	12.7 (0.5)	12.7 (0.5)	1.00 (0.04)
Feed hole pitch	P ₀	12.7 (0.5)	12.7 (0.5)	±0.30 (0.01)
Feed hole centre to lead	P ₁	5.08 (0.2)	3.81 (0.15)	±0.70 (0.03)
Feed hole centre to component	P ₂	6.35 (0.25)	6.35 (0.25)	±0.70 (0.03)
Lead spacing	F	2.54 (0.10)	5.08 (0.20)	+0.6 (0.02) -0.1 (0.004)
Component alignment	Δh	0	0	±2.00(0.08)
Tape width	W	18.0 (0.70)	18.0 (0.70)	+1.00 (0.04) -0.50 (0.02)
Hold down tape width	W_{0}	6.0 (0.23)	6.0 (0.23)	±0.30 (0.01)
Hole position	W ₁	9.0 (0.35)	9.0 (0.35)	±0.50 (0.02)
Hold down tape position	W_2	0.50 (0.02)	0.50 (0.02)	Max
Height to seating plane from tape centre (straight leads) (2)	Н	16 (0.63) to 20 (0.79)	16 (0.63) to 20 (0.79)	As required
Height to seating plane from tape centre (formed leads) (2)	H ₀	16 (0.63) to 20 (0.79)	16 (0.63) to 20 (0.79)	As required
Height to top of component from tape centre	H ₁	32.2 (1.26)	32.2 (1.26)	Max
Feed hole diameter	D ₀	4.0 (0.16)	4.0 (0.16)	±0.20 (0.008)
Carrier tape plus adhesive tape thickness	t	0.7 (0.03)	0.7 (0.03)	±0.20 (0.008)
Carrier tape thickness	-	0.5 (0.02)	0.5 (0.02)	±0.10 (0.004)
Cut out component snipped lead length from tape centre	L	11.0 (0.43)	11.0 (0.43)	Max
Lead wire protusion from hold down	$L_{\!\scriptscriptstyle 2}$	2.0 (0.08)	2.0 (0.08)	Max


Bandoliered reels

The adhesive tape faces outwards. The dispensing direction is as shown. For the protection of the components a paper inlay is inserted between the windings of the bandolier. At the end of the bandolier this paper inlay continues for at least a further two rotations.


Bandoliered ammo packing

High Temp Radial Leaded Caps - Epoxy Coated

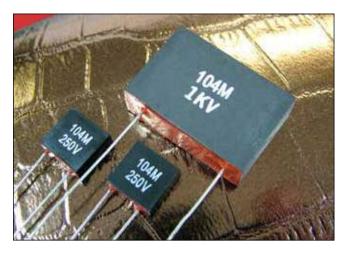

A range of Radial Leaded capacitors available in sizes 1515 to 7565 designed to operate from -55°C to 200°C in COG/NPO and Class II dielectrics with voltage ratings of 25V to 4kV. These capacitors find typical application in harsh environments such as Oil Exploration and Automotive/Avionics engine compartment circuitry. The epoxy coating ensures environmental protection and a rugged configuration for optimum performance. They are also offered without the conformal coating for less harsh environmental applications.

- Capacitance tolerances: ±1%*, ±2%*, ±5%, ±10%, ±20% (*C0G/NP0 only)
- For ordering information see page 83.

Dimensions - inches/mm

Le	ad Style	LC	G with b	lack ep	оху соа	ting - LO) withou	ut
	Size	1515	1812	2520	3530	4540	6560	7565
W	inches:	0.250	0.300	0.370	0.470	0.570	0.770	0.870
	mm:	6.35	7.62	9.40	11.90	14.50	19.60	22.10
Н	inches:	0.250	0.200	0.300	0.400	0.500	0.720	0.770
	mm:	6.35	5.08	7.62	10.20	12.70	18.30	19.60
T	inches:	0.190	0.160	0.240	0.310	0.360	0.360	0.360
	mm:	4.83	4.06	6.10	7.87	9.14	9.14	9.14
S	inches ±0.02:	0.170	0.200	0.280	0.380	0.480	0.680	0.780
	mm ±0.508:	4.32	5.08	7.10	9.65	12.20	17.30	19.80

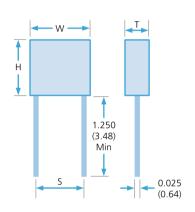
Maximum capacitance values - 200°C COG/NPO (D)/Class II (E) dielectrics


Size	15	15	18	12	25	20	35	30	45	40	65	60	75	65
Min cap.	5R0	151	220	151	390	102	390	102	390	102	560	222	101	222
Dielectric	C0G	Class II	C0G	Class II	C0G	Class II	C0G	Class II						
25V	22nF	820nF	27nF	1.0μF	56nF	2.2µF	100nF	3.9µF	18 0 nF	5.6µF	330nF	15µF	390nF	18µF
50V	18nF	680nF	22nF	650nF	56nF	1.8µF	82nF	2.7µF	15 0nF	4.7μF	270nF	12µF	330nF	15µF
100V	10nF	270nF	10nF	270nF	33nF	1.2µF	56nF	2.2µF	100nF	3.3µF	220nF	8.2µF	270nF	12µF
250V	3.9nF	82nF	6.8nF	100nF	15nF	270nF	33nF	56 0 nF	56nF	1.2µF	120nF	2.7µF	150nF	3.9µF
500V	2.7nF	18nF	3.3nF	22nF	5.6nF	56nF	12nF	120nF	27nF	330nF	56nF	680nF	68nF	820nF
1kV	820pF	2.7nF	1.0nF	3.3nF	1.8nF	12nF	5.6nF	27nF	15nF	68nF	33nF	150nF	39nF	220nF
2kV	180pF	560pF	220pF	680pF	390pF	2.2nF	1.5nF	6.8nF	3.3nF	18nF	8.2nF	39nF	10nF	47nF
3kV	8.2pF	220pF	100pF	220pF	180pF	820pF	560pF	2.7nF	1.5nF	6.8nF	3.3nF	15nF	3.9nF	18nF
4kV	4.7pF	•	•	•	100pF	220pF	330pF	1.2nF	820pF	2.7nF	1.8nF	5.6nF	2.2nF	8.2nF

Note: Maximum capacitance values are shown above as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000pF. R denotes decimal e.g. 2R7 = 2.7pF.

High Temp Radial Leaded Caps - Encapsulated

A range of Radial Leaded capacitors available in sizes 1515 to 7565 designed to operate from -55°C to 200°C in COG/NPO and Class II dielectrics. Voltage ratings of 25V to 500V. These capacitors find typical application in very harsh environments where isolation and protection of the device is required for optimum reliability. They are also offered without the molded case for less harsh environmental applications. Consult the Sales Office if your specific requirements exceed our catalogue maximums (size, cap. value and voltage).


- Capacitance tolerances: ±1%*, ±2%*, ±5%, ±10%, ±20% (*COG/NPO only)
- For ordering information see page 83.

Dimensions - inches/mm

Le	ead Style		LC wit	th encap	osulatio	n - LO w	/ithout	
	Size	1515	2520	3530	4540	5550	6560	7565
W	inches ±0.015:	0.300	0.400	0.500	0.725	0.795	0.925	1.125
	mm ±0.381:	7.62	10.20	12.70	18.40	20.20	23.50	28.60
Н	inches ±0.015:	0.300	0.400	0.500	0.500	0.745	0.750	0.750
	mm ±0.51:	7.62	10.20	12.70	12.70	18.90	19.00	19.00
Т	inches ±0.015: mm ±0.51:	0.150 3.81	0.200 5.08	0.265 6.73	0.325 8.26	0.370 9.40	0.350 8.89	0.375 9.52
S	inches ±0.02:	0.170	0.280	0.380	0.480	0.580	0.680	0.780
	mm ±0.508:	4.32	7.10	9.65	12.20	14.70	17.30	19.80

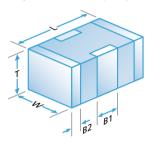
Maximum capacitance values - 200°C COG/NPO (D)/Class II (E) dielectrics

Size	15	15	25	20	35	30	45	40	55	50	65	60	75	65
Min cap.	3R0	221	390	102	390	102	390	102	390	102	560	222	101	222
Dielectric	C0G	Class II	C0G	Class II	C0G	Class II	C0G	Class II	C0G	Class II	C0G	Class II	C0G	Class II
25V	18nF	560nF	56nF	2.2µF	100nF	3.9µF	180nF	5.6µF	220nF	10μF	330nF	15µF	390nF	18µF
50V	15nF	390nF	56nF	1.5µF	82nF	2.7µF	150nF	4.7µF	180nF	6.8µF	270nF	12µF	330nF	15μ F
100V	5.6nF	120nF	27nF	82 0 nF	56nF	1.8µF	100nF	3.3µF	150nF	5.6µF	22 0 nF	8.2µF	270nF	10μF
250V	3.9nF	39nF	12nF	180nF	273	56 0nF	56nF	1.2µF	82nF	2.2µF	12 0n F	2.7µF	150nF	3.9µF
500V	1.5nF	8.2nF	5.6nF	39nF	12nF	82nF	27nF	220nF	39nF	330nF	56nF	470nF	82nF	680nF

Note: Maximum capacitance values are shown above as 3 digit code: 2 significant figures followed by the no. of zeros e.g. 183 = 18,000pF. R denotes decimal e.g. 2R7 = 2.7pF.

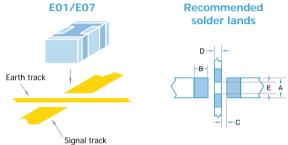
Surface Mount EMI Filters - E01 & E07 feedthrough capacitors

The Syfer E01 and E07 ranges of feedthrough MLCC chip 'C' filters are 3 terminal chip devices designed to offer reduced inductance compared to conventional MLCCs when used in signal line filtering.


The filtered signal passes through the chip internal electrodes and the noise is filtered to the grounded side contacts, resulting in reduced length noise transmission paths.

Available in COG/NP0 and X7R dielectrics, with current ratings of 300mA, 1A, 2A, 3A and voltage ratings of 25Vdc to 200Vdc. Also available with FlexiCap $^{\text{TM}}$ termination which is strongly recommended for new designs.

Commonly used in automotive applications, a range qualified to AEC-Q200 is also available.


EO1 300mA, EO7 1A/2A/3A

Dimensions

	0805	1206	1806	1812
L	2.0 ± 0.3	3.2 ± 0.3	4.5 ± 0.35	4.5 ± 0.35
	(0.079 ± 0.012)	(0.126 ± 0.012)	(0.177 ± 0.014)	(0.177 ± 0.014)
W	1.25 ± 0.2 (0.049 ± 0.008)	1.6 ± 0.2 (0.063 ± 0.008)	1.6 ± 0.2 (0.063 ± 0.008)	3.2 ± 0.3 (0.126 ± 0.012)
Т	1.0 ± 0.15 (0.039 ± 0.006)	$1.1 \pm 0.2 \\ (0.043 \pm 0.008)$	$1.1 \pm 0.2 \\ (0.043 \pm 0.008)$	2.0 ± 0.3 (0.079 ± 0.012)
В1	0.60 ± 0.2	0.95 ± 0.3	1.4 ± 0.3	1.45 ± 0.35
	(0.024 ± 0.008)	(0.037 ± 0.012)	(0.055 ± 0.012)	(0.055 ± 0.012)
B2	0.3 ± 0.15	0.5 ± 0.25	0.5 ± 0.25	0.75 ± 0.25
	(0.012 ± 0.006)	(0.02 ± 0.01)	(0.02 ± 0.01)	(0.02 ± 0.01)

	0805	1206	1806	1812
Α	0.95 (0.037)	1.20 (0.047)	1.2 (0.047)	2.65 (0.104)
В	0.90 (0.035)	0.90 (0.035)	1.40 (0.055)	1.40 (0.055)
С	0.30 (0.012)	0.60 (0.024)	0.80 (0.031)	0.80 (0.031)
D	0.40 (0.016)	0.80 (0.031)	1.40 (0.055)	1.40 (0.055)
E	0.75 (0.030)	1.0 (0.039)	1.0 (0.039)	2.05 (0.080)

Notes: 1) All dimensions mm (inches).

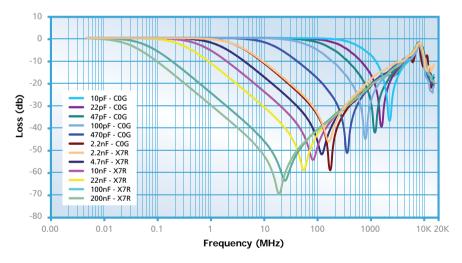
- 2) Pad widths less than chip width gives improved mechanical performance.
- 3) The solder stencil should place 4 discrete solder pads. The unprinted distance between ground pads is shown as dim E.
- 4) Insulating the earth track underneath the filters is acceptable and can help avoid displacement of filter during soldering but can result in residue entrapment under the chip.

Standard Range - E01 & E07 Feedthrough Capacitors

Туре			E01			E07				
Chip Si	ze	0805	1206	1806	0805 1206		1806	1812		
Max Cur	rent	300mA	300mA	300mA	1A	2A	2A	3A		
Rated Voltage	Dielectric			Minimum and	d maximum capac	itance values				
25Vdc	COG/NPO	180pF-1.5nF	560pF-3.9nF	820pF-4.7nF	180pF-1.5nF	560pF-3.9nF	820pF-4.7nF	-		
25 VUC	X7R	470pF-100nF	5.6nF-330nF	3.9nF-560nF	820pF-100nF	10nF-330nF	22nF-560nF	560nF-1.8μF		
50Vdc	COG/NPO	22pF-820pF	22pF-3.3nF	22pF-3.9nF	10pF-220pF	22pF-1nF	100pF-1.5nF	-		
SOVAC	X7R	560pF-68nF	4.7nF-220nF	3.3nF-330nF	1nF-68nF	10nF-220nF	22nF-330nF	330nF-1.5μF		
100Vdc	COG/NPO	22pF-560pF	22pF-2.2nF	22pF-3.3nF	10pF-120pF	22pF-560pF	100pF-680pF	-		
100700	X7R	560pF-27nF	1.8nF-100nF	3.3nF-180nF	1nF-27nF	10nF-100nF	22nF-180nF	180nF-820nF		
200Vdc	COG/NPO	-	560pF-1.2nF	56pF-1nF	-	15pF-180pF	56pF-470pF	-		
200 vac	X7R	-	2.7nF-56nF	3.9nF-100nF	-	12nF-56nF	22nF-100nF	100nF-270nF		

Note: E07 25Vdc C0G/NP0 1206 and 1806 ranges in green, have maximum current of 1A.

AEC-Q200 Qualified Range - E01 & E07 Feedthrough Capacitors - maximum capacitance values


Ту	pe		E01		E07			
Chip Size		0805	1206	1806	0805	1206	1806	
50V	COG/NPO	820pF	1nF	2.2nF	220pF	1nF	1.5nF	
300	X7R	47nF	100nF	200nF	47nF	100nF	200nF	
4001/	COG/NPO	560pF	1nF	2.2nF	120pF	560pF	680pF	
100V	X7R	15nF	15nF	68nF	15nF	15nF	68nF	

Notes: = AEC-Q200. For some lower capacitance parts, higher voltage rated parts may be supplied.

Surface Mount EMI Filters - E01 & E07 feedthrough capacitors

Open board insertion loss performance in 50Ω system

Open Board Performance										
Capacitance	0.1MHz	1MHz	10MHz	100MHz	1GHz	Resonance Freq (MHz) approx.				
10pF	0	0	0	0	7.5	2200				
22pF	0	0	0	0	16	1600				
33pF	0	0	0	1	22	1350				
47pF	0	0	0	2	28	1150				
68pF	0	0	0	3	41	900				
100pF	0	0	0	5	28	800				
150pF	0	0	0	8	24	700				
220pF	0	0	0	12	20	600				
330pF	0	0	1	15	20	500				
470pF	0	0	2	18	20	425				
560pF	0	0	3	20	20	350				
680pF	0	0	4	22	20	300				
820pF	0	0	5	24	20	260				
1.0nF	0	0	7	27	20	220				
1.5nF	0	0	9	31	20	200				
2.2nF	0	0	12	34	20	170				
3.3nF	0	1	14	39	20	135				
4.7nF	0	2	18	46	20	110				
6.8nF	0	3	21	50	20	90				
10nF	0	5	24	48	20	80				
15nF	0	8	27	45	20	65				
22nF	0	12	31	43	20	56				
33nF	1	14	34	40	20	40				
47nF	2	17	38	40	20	34				
68nF	4	20	41	40	20	30				
100nF	6	24	45	40	20	28				
150nF	8	26	48	40	20	24				
220nF	10	30	52	40	20	17				
330nF	13	33	55	40	20	15.5				
470nF	16	36	60	40	20	14				
560nF	18	39	65	40	20	12				

Ordering Information - E01 & E07 feedthrough capacitors

1206	Υ	100	0103	M	X	T	E07
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Tolerance	Dielectric	Packaging	Туре
0805 1206 1806 1812	J = Nickel Barrier (Tin) *Y = FlexiCap™ (Tin - X7R only) A = (Tin/Lead) Not RoHS compliant. *H = FlexiCap™ (Tin/Lead) Not RoHS compliant.	025 = 25V 050 = 50V 100 = 100V 200 = 200V	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following Example: 0103 = 10000pF.	M = ±20%	A = COG/NP0 AEC-Q200 C = COG/NP0 E = X7R AEC-Q200 X = X7R	T = 178mm (7") reel R = 330mm (13") reel B = Bulk	E01 E07

Note: *FlexiCap™ termination only available in X7R material. Please contact our Sales Office for any special requirements.

Reeled quantities

178mm	0805	1206	1806	1812
(7") reel	3000	2500	2500	1000

330mm	0805	1206	1806	1812
(13") reel	12000	10000	10000	4000

Surface Mount EMI Filters - E03 X2Y Integrated Passive Components

The Syfer X2Y Integrated Passive Component is a 3 terminal EMI chip device.

When used in balanced line applications, the revolutionary design provides simultaneous line-to-line and line-to-ground filtering, using a single ceramic chip. In this way, differential and common mode filtering are provided in one device.

For unbalanced applications, it provides ultra low ESL (equivalent series inductance). Capable of replacing 2 or more conventional devices, it is ideal for balanced and unbalanced lines, twisted pairs and dc motors, in automotive, audio, sensor and other applications. Available in sizes from 0805 to 1812, these filters can prove invaluable in meeting stringent EMC demands.

Manufactured by Knowles Capacitors under licence from X2Y Attenuators LLC.

Capacitance measurement At 1000hr point

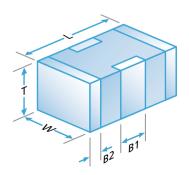
Typical capacitance matching Better than 5% (down to 1% available on request)

Temperature rating -55°C to 125°C

Insulation resistance 100Gohms or 1000s (whichever is the less)

Dielectric withstand voltage ≤200V 2.5 times rated Volts for 5 secs 500V 1.5 times rated Volts for 5 secs Charging current limited to

50mA Max.


Туре		E03					
Chip	size	0805 1206		1410	1812		
Rated voltage	Dielectric						
25Vdc	COG/NPO	560pF - 820pF	1.8nF - 3.3nF	6.8nF - 8.2nF	12nF - 15nF		
25 Vac	X7R	56nF - 68nF	-	470nF	820nF		
50Vdc	COG/NPO	390pF - 470pF	1.2nF - 1.5nF	4.7nF - 5.6nF	8.2nF - 10nF		
50Vac	X7R	18nF - 47nF	56nF - 220nF	180nF - 400nF	390nF - 680nF		
100Vdc	COG/NPO	10pF - 330pF	22pF - 1.0nF	100pF - 3.9nF	820pF - 6.8nF		
100700	X7R	470pF - 15nF	1.5nF - 47nF	4.7nF - 150nF	8.2nF - 330nF		
200Vdc	COG/NPO	-	22pF - 1.0nF	100pF - 3.3nF	820pF - 5.6nF		
200Vdc	X7R	-	820pF - 33nF	1.2nF - 120nF	2.7nF - 180nF		
500Vdc	COG/NPO	-	-	-	820pF - 3.9nF		
500Vac	X7R	-	-	-	2.7nF - 100nF		

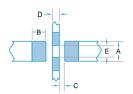
Note: For some lower capacitance parts, higher voltage rated parts may be supplied.

AEC-Q200 range (E03) - capacitance values

Chip size		0805	1206	1410	1812
FOVdo	COG/NPO	390pF - 470pF	1.2nF - 1.5nF	4.7nF - 5.6nF	8.2nF - 10nF
50Vdc	X7R	18nF - 33nF	56nF - 150nF	180nF - 330nF	390nF - 560nF
100Vdc	COG/NPO	10pF - 330pF	22pF - 1.0nF	100pF - 3.9nF	820pF - 6.8nF
TOUVAC	X7R	470pF - 15nF	1.5nF - 47nF	4.7nF - 150nF	8.2nF - 330nF

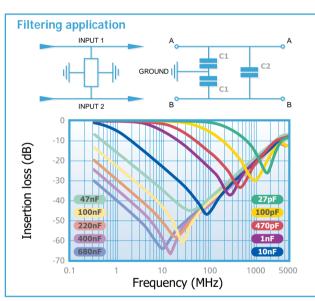
Note: = AEC-Q200.

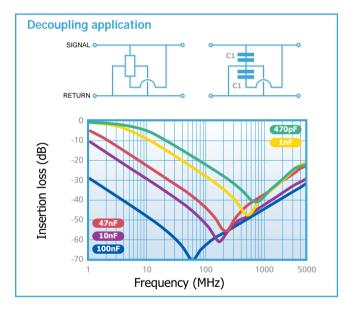
	0805	1206	1410	1812
L	2.0±0.3 (0.08±0.012)	3.2±0.3 (0.126±0.012)	3.6±0.3 (0.14±0.012)	4.5±0.35 (0.18±0.014)
W	1.25±0.2 (0.05±0.008)	1.60±0.2 (0.063±0.008)	2.5±0.3 (0.1±0.012)	3.2±0.3 (0.126±0.012)
Т	1.0±0.15 (0.04±0.006)	1.1±0.2 (0.043±0.008)	2.0 max. (0.08 max.)	2.1 max. (0.08 max.)
B1	0.5±0.25 (0.02±0.01)	0.95±0.3 (0.037±0.012)	1.20±0.3 (0.047±0.012)	1.4±0.35 (0.06±0.014)
B2	0.3±0.15 (0.012±0.006)	0.5±0.25 (0.02±0.01)	0.5±0.25 (0.02±0.01)	0.75±0.25 (0.03±0.01)


Notes: 1) All dimensions mm (inches).
2) Pad widths less than chip width gives improved mechanical performance.

The solder stencil should place 4 discrete solder pads. The un-printed distance between ground pads is shown as dim E.

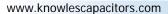
4) Insulating the earth track underneath the filters is acceptable and can help avoid displacement of filter during soldering but can result in residue entrapment under the chip.


Surface Mount EMI Filters - E03 X2Y Integrated Passive Components


Recommended solder lands

	0005	1207	1440	1010
	0805	1206	1410	1812
Α	0.95 (0.037)	1.2 (0.047)	2.05 (0.08)	2.65 (0.104)
В	0.9 (0.035)	0.9 (0.035)	1.0 (0.040)	1.4 (0.055)
С	0.3 (0.012)	0.6 (0.024)	0.7 (0.028)	0.8 (0.031)
D	0.4 (0.016)	0.8 (0.031)	0.9 (0.035)	1.4 (0.055)
E	0.75 (0.030)	1.0 (0.039)	1.85 (0.071)	2.05 (0.080)

Component	Advantages	Disadvantages	Applications
Chip capacitor	Industry standard	Requires 1 per line High inductance Capacitance matching problems	By-pass Low frequency
3 terminal feedthrough	Feedthrough Lower inductance	Current limited	Feedthrough Unbalanced lines High frequency
Syfer X2Y Integrated Passive Component	Very low inductance Replaces 2 (or 3) components Negates the effects of temperature, voltage and ageing Provides both common mode and differential mode attenuation Can be used on balanced & unbalanced lines	Care must be taken to optimise circuit design	By-pass Balanced lines High frequency dc electric motors Unbalanced lines Audio amplifiers CANBUS


Ordering Information - X2Y IPC range

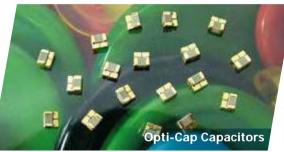
1812	Υ	100	0334	M	X	T	E03
Chip Size	Termination	Voltage	Capacitance in picofarads (pF) C1	Tolerance	Dielectric	Packaging	Туре
0805 1206 1410 1812	J = Nickel Barrier (Tin) *Y = FlexiCap™ (Tin - X7R only) A = (Tin/Lead) Not RoHS compliant. *H = FlexiCap™ (Tin/Lead) Not RoHS compliant.	025 = 25V 050 = 50V 100 = 100V 200 = 200V 500 = 500V	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following Example: 0334=330nF. Note: C ₁ = 2C ₂	M = ±20% (Tighter tolerances may be available on request).	A = COG/NP0 AEC-Q200 C = COG/NP0 E = X7R AEC-Q200 X = X7R	T = 178mm (7") reel R = 330mm (13") reel B = Bulk	Syfer X2Y Integrated Passive Component

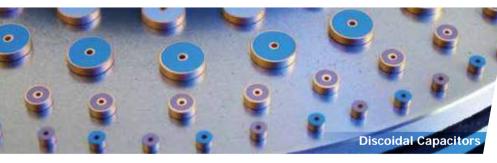
Note: *FlexiCap™ termination only available in X7R material. Please contact the sales office for any special requirements.

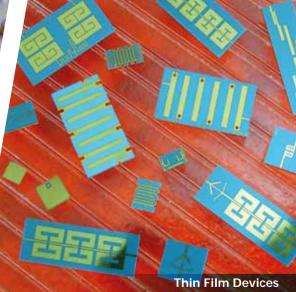
Reeled	
quantiti	es

178mm (7")	0805	1206	1410	1812	330mm (13")	0805	1206	1410	1812
reel	3000	2500	2000	1000	reel	12000	10000	8000	4000

Other products available







pacitors

Knowles Capacitors designs, manufactures and sells special electronic components. Our products are used in military, space, telecom infrastructure, medical and industrial applications where function and reliability are crucial.

Knowles (Cazenovia) 2777 Route 20 East, Cazenovia, NY 13035 USA

Phone: +1 315 655 8710 Fax: +1 315 655 0445 KCCSales@knowles.com

Knowles (Cazenovia) 2777 Route 20 East, Cazenovia, NY 13035 USA

Phone: +1 315 655 8710 Fax: +1 315 655 0445 KCCSales@knowles.com

Knowles (Valencia) 25111 Anza Drive, Valencia, CA 91355 USA

Phone: +1 661 295 5920 Fax: +1 661 295 5928 NovacapSales@knowles.com

Knowles (UK) Ltd Hethel Engineering Centre, Chapman Way, Hethel, Norwich, Norfolk NR14 8FB

Phone: +44 1603 723300 Fax: +44 1603 723301 SyferSales@knowles.com

Knowles (Cazenovia) 2777 Route 20 East, Cazenovia, NY 13035 USA

Phone: +1 315 655 8710 Fax: +1 315 655 0445 VoltronicsSales@knowles.com