

600V, 2A, 4 N-Channel Power MOSFET

TO-251 (IPAK)

TO-252 (DPAK)

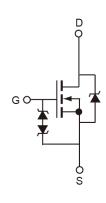
Pin Definition:

- 1. Gate
- 2. Drain
- 3. Source

Key Parameter Performance

Parameter	Value	Unit
V_{DS}	600	V
$R_{DS(on)}(max)$	4	
Qg (typ)	9.5	nC

Features


100% Avalanche Tested G-S ESD Protection Diode Embedded

Ordering Information

Part No.	Package	Packing
TSM2N60ECH C5G	TO-251	75pcs / Tube
TSM2N60ECP ROG	TO-252	2.5kpcs / 13+Reel

Note: %+denotes for Halogen- and Antimony-free as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds

Block Diagram

N-Channel MOSFET with ESD Protection

Absolute Maximum Ratings (T_C = 25°C unless otherwise noted)

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	600	V	
Gate-Source Voltage		V_{GS}	±30	V	
Out: Discount (Note 1)	Tc = 25°C	- I _D	2	А	
Continuous Drain Current	Continuous Drain Current (Note 1)		1.43	Α	
Pulsed Drain Current (Note 2)		I _{DM}	8	А	
Repetitive Avalanche Current (Note 1)		I_{AR}	2	А	
Repetitive Avalanche Energy (Note 1)		E_{AR}	5.2	Α	
Single Pulse Avalanche Energy (Note 3)		E _{AS}	66	mJ	
Total Power Dissipation	$T_{\rm C} = 25$	5°C	_	52.1	W
	Derate	above $T_C = 25^{\circ}C$	P_{D}	0.416	W/°C
Peak Diode Recovery dV/dt (Note 4)		dV/dt	4.5	V/ns	
Operating Junction Temperature		TJ	-55 to +150	°C	
Storage Temperature Range		T_{STG}	-55 to +150	°C	

Thermal Performance

Parameter	Symbol	Limit	Unit
Thermal Resistance - Junction to Case	R _{JC}	2.4	°C/W
Thermal Resistance - Junction to Ambient	R _{JA}	110	°C/W

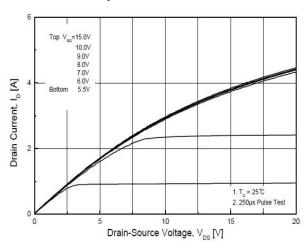
600V, 2A, 4 N-Channel Power MOSFET

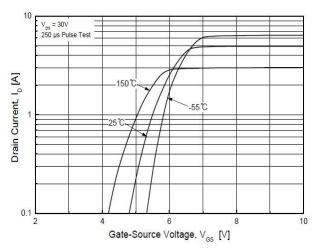
Electrical Specifications (T_C = 25°C unless otherwise noted)

Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Static (Note 5)						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A$	BV _{DSS}	600			V
Drain-Source On-State Resistance	$V_{GS} = 10V, I_D = 1A$	R _{DS(ON)}		3.2	4	
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	V _{GS(TH)}	3		5	V
	$V_{DS} = 600V, V_{GS} = 0V$				1	μA
Zero Gate Voltage Drain Current	V _{DS} = 480V, T _J = 125°C	I _{DSS}			10	
Gate Body Leakage	$V_{GS} = \pm 30V, V_{DS} = 0V$	I _{GSS}			±100	μΑ
Forward Transconductance	$V_{DS} = 30V, I_{D} = 1A$	g fs		3		S
Dynamic (Note 6)						
Total Gate Charge	$V_{DS} = 480V, I_{D} = 2A,$	Q_g		9.5		nC
Gate-Source Charge		Q_gs		2.1		
Gate-Drain Charge	V _{GS} = 10V	Q_{gd}		3.9		
Input Capacitance	.,	C _{iss}		362		pF
Output Capacitance	$V_{DS} = 25V$, $V_{GS} = 0V$,	C _{oss}		40		
Reverse Transfer Capacitance	f = 1MHz	C _{rss}		7.2		
Switching (Note 7)						
Turn-On Delay Time		t _{d(on)}		21		
Turn-On Rise Time	$V_{DD} = 300 \text{V}, V_{GS} = 10 \text{V},$	t _r		22		ns
Turn-Off Delay Time	$R_G = 25\Omega$, $I_D = 2A$	t _{d(off)}		41		
Turn-Off Fall Time		t _f		21		
Source-Drain Diode Ratings and C	Characteristic (Note 5)					
Maximum Continuous Drain-Source Diode Forward Current		Is			2	Α
Maximum Pulse Drain-Source Diode Forward Current		I _{SM}			8	Α
Diode-Source Forward Voltage	$V_{GS} = 0V$, $I_S = 2A$	V_{SD}			1.5	V
Reverse Recovery Time	$V_{GS} = 0V$, $I_S = 2A$	t _{rr}		238		ns
Reverse Recovery Charge	$dI_F/dt = 100A/\mu s$	Q _{rr}		0.8		nC

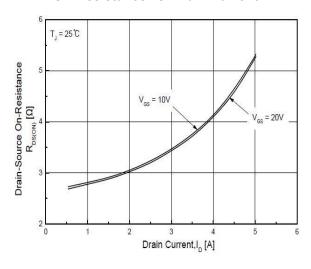
Notes:

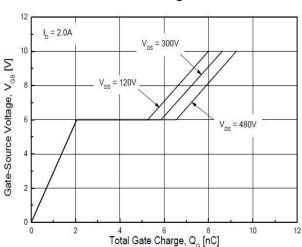
- 1. Current limited by package
- 2. Pulse width limited by the maximum junction temperature
- 3. $V_{DD} = 50V$, L= 30.5mH, $I_{AS} = 2A$, $R_G = 25\Omega$, Starting $T_J = 25^{\circ}C$
- 4. I_{SD} m2A, di/dt m200A/ μ s, V_{DD} mBV_{DS}, Starting T_J = 25°C
- 5. Pulse test: PW m300µs, duty cycle m2%
- 6. For DESIGN AID ONLY, not subject to production testing.
- 7. Switching time is essentially independent of operating temperature.

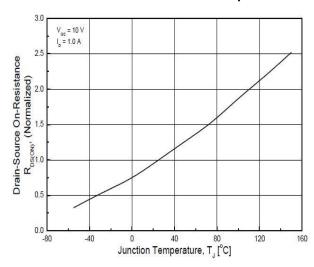


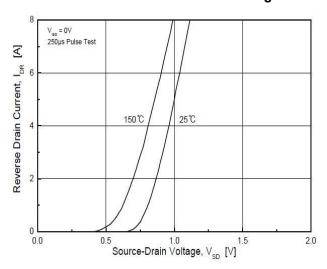

600V, 2A, 4 N-Channel Power MOSFET

Electrical Characteristics Curves (T_C = 25°C, unless otherwise noted)


Output Characteristics

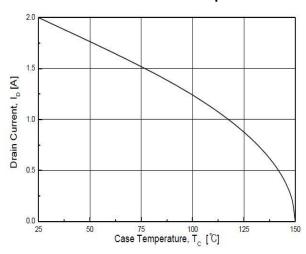

Transfer Characteristics

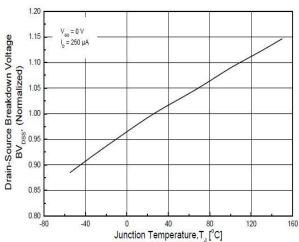

On-Resistance vs. Drain Current


Gate Charge

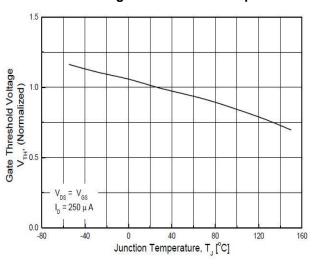
On-Resistance vs. Junction Temperature

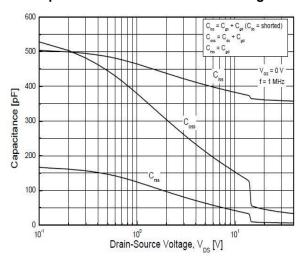
Source-Drain Diode Forward Voltage

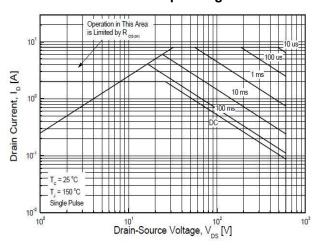


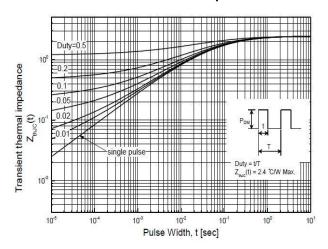

600V, 2A, 4 N-Channel Power MOSFET

Electrical Characteristics Curve (T_C = 25°C, unless otherwise noted)


Drain Current vs. Case Temperature

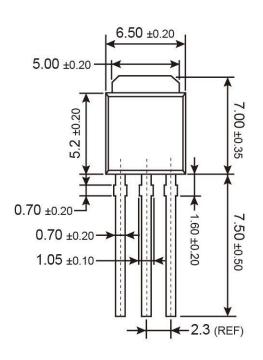

 BV_{DSS} vs. Junction Temperature

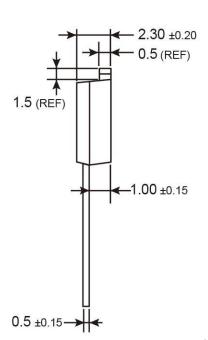

Threshold Voltage vs. Junction Temperature


Capacitance vs. Drain-Source Voltage

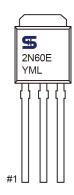
Maximum Safe Operating Area

Normalized Transient Impedance





600V, 2A, 4 N-Channel Power MOSFET

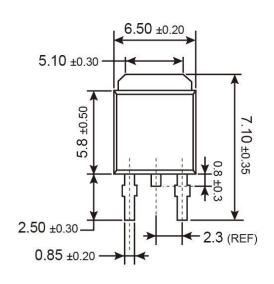

TO-251 Mechanical Drawing

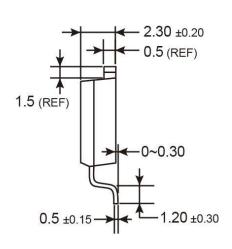
Unit: Millimeters

Marking Diagram

Y = Year Code

M = Month Code for Halogen Free Product (O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep, X=Oct, Y=Nov, Z=Dec)


L = Lot Code



600V, 2A, 4 N-Channel Power MOSFET

TO-252 Mechanical Drawing

Unit: Millimeters

Marking Diagram

Y = Year Code

M = Month Code for Halogen Free Product (O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep, X=Oct, Y=Nov, Z=Dec)

L = Lot Code

TSM2N60E 600V, 2A, 4 N-Channel Power MOSFET

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSCs terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.